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Abstract

This talk makes brief summary comments on abilities, in R’s lme4
package, for analysis of mixed models, i.e., models that have multiple
superposed levels of variation.

There are normality and independence assumptions for each of the
sets of random effects in the model. What should the statistical
sleuth make of the anatomical details, once they are on show?
Simulation seems a pretty much indispensible tool. One or other set
of assumptions may be of greater or lesser consequence, depending on
the relative magnitudes of the relevant effects and on the inferences
that are intended.

The function lme() in the nlme package has extensive abilities for
handling repeated measures models, while lmer() (in lme4) is able to
fit generalized linear mixed models.



R Packages for Mixed Models

1. nlme: function lme(), for hierarchical models (+?).
Development has pretty much ceased.

2. lme4 : – both hierarchical & crossed models.
Use lmer() for linear mixed models and (maybe)
glmer() for generalized linear mixed models.
It is important when discussing the behavior of lmer and
other functions in the lme4 package to state the version of
the package that you are using. The package changes as I
experiment with the computational methods. Douglas Bates,
5 Nov 2008.

3. Note anova() for balanced designs. Beware however of
output from the function model.tables()!

4. Other R packages for working with GLMMs include glmmAK,
glmmBUGS (an interface to WinBugs) and glmmML.

5. lmeSplines: adds spline modelling capability to nlme.



Classes of Models

I Crossed versus nested models.
I Notions of balance:

I Complete balanced designs.
I Balanced incomplete block designs.
I Generally balanced designs (SEs of treatment differences all equal;

this is a superclass of generally balanced designs a/c Genstat)
I Unbalanced designs.

I ANOVA, or Multi-level modeling (e.g. Shading data)
I ANOVA: Stratum mean squares are a big part of the story.
I Multi-level models: Know your components of variance!

Kiwifruit Shading Trial (kiwishade from DAAG package)

Blocks (3)/plots (4 per block)/vines (4 per plot)

4 shading treatments, randomized to whole plots within blocks.



Kiwifruit shading trial

Fit to vines:

yvine = GM + effblock + efftrt + effplot + residvine

vfit <- lmer(yield ~ shade + (1 | block/shade), kiwishade)

I We can equally well calculate plot means, and fit to plots.
I The analysis provides estimates of the effects that appear in

the equation above, both the shade:block (i.e., plot)
effects and (if of interest) the block effects.

I In this instance, estimated plot effects provide a check on
normality, at the level where normality may be important for
inferences about treatment effects. (In general, with more
complex models, averaging and/or tradeoffs between
estimates of different effects may have the result that the
plots of effect estimates are not very informative.)
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Q−Q plot: residuals

lmer(yield ~ shade + (1 | block/shade), kiwishade)
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Conventional ANOVA Table

Df Sum of Sq Mean sq E[Mean sq]
block level 2 172.35 86.17 16σ2

B + 4σ2
P + σ2

V

plot:block level
shade 3 1394.51 464.84 4σ2

P + σ2
V + trt ms

residual 6 125.57 20.93 4σ2
P + σ2

V

Units (Residual) 36 438.58 12.18 σ2
V

A muli-level model perspective

Df Var cpt Var[mean]
block level 2 4.08 4.08 + 2.19

4 + 12.18
16 = 86.17

16

plot:block level
shade 3
residual 6 2.19 2.19 + 12.18

4 = 20.93
4

Units (Residual) 36 12.18 12.18



Random or Fixed Blocks; Vine or Plot; lme() or lme4()

For estimating treatment effects, the following are equivalent:

lmer(yield ~ shade + (1 | block/shade), data=kiwishade)

lmer(yield ~ block + shade + (1 | block:shade),

data=kiwishade) # fixed blocks; unchanged trt SEDs

## -------------- Analysis of plot means --------------

ksPlot <- with(kiwishade,

aggregate(yield, by=list(block=block, shade=shade),

mean))

names(ksPlot)[3] <- "avyield"

## Analysis based on plot means

lmer(avyield ~ shade + (1 | block), data=ksPlot)

- - - - - - - - Note also the lme() (from nlme ) syntax: - - - - - - - -

library(nlme)

lme(yield ~ shade, random = ~1 | block/shade,

data = kiwishade)

## Modify similarly for other possibilities
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Different Paths to Enlightenment; Vine or Plot as Unit

vfit <- lmer(yield ~ shade + (1 | block/shade), kiwishade)

pfit <- lmer(avyield ~ shade + (1 | block), data=ksPlot)

plot(resid(pfit) ~ ranef(vfit, drop=TRUE)[["shade:block"]])

Fit to vines: SD[plot effects] = 1.48

yvine = GM + effblock + efftrt

+effplot + residvine

Fit to plots: SD[plot means] = 2.29

yplot = GM + effblock + efftrt

+residplot
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Degrees of Freedom and p-value Issues

I Unless designs are suitably balanced, p-values are more than
ordinarily suspect.

I In general, for tests in a multilevel model where the denominator
SE or variance is a linear combination of the components of
variance, there is no uniquely defined p-value!

I For hierarchical designs that are in a suitable sense close to
balance p-values, based on t- and F -statistics as for balanced
designs, may not be too bad. (Users of lme4 will however have to
work out the details for themselves.)

I Kenward-Roger approximations (not available in lme4), can in
principle cater for both hierachical and crossed designs.

I lme4 offers MCMC estimation of Bayesian credible intervals.
I This seems better in principle than distributional approximations.

Ideally, users would be encouraged to think about the priors for the
random effects, and experiment with different choices of priors.

I Degrees of freedom information has other and more legitimate
uses than for calculating p-values. They measure (roughly) the
amount of information on which one or other SE may be based.



The Management of the Mixed Effects Menagerie

Var est d.f.
Block 2.19 2 p=0.076
Plot 4.08 6 (3 for shade) p=0.14
Residual 12.18 36

I Random effects that are not at the level of treatment
units can often be removed with relative impunity.

I “Remove if not significant”, prior to testing for fixed
effects, is (except perhaps as above) an abuse of testing
Consider, e.g.:

I With plot effect: 6 d.f. for trts: SED = 1.87; 6 d.f.
I Without effect: 42 d.f. for trts: SED = 1.50; 42 d.f.

NB also: With small d.f., non-normality is more serious.

I Historical experience can be a good guide.

I Simplify crossed design to hierarchical? (When/how?)



Generalization, not Inference

‘Generalization” stimulates the pertinent brain juices.
“Inference” may stimulate the wrong juices, or none at all!

I Treatment differences, many paths lead to the desired end.
(NB: the three contiguous blocks assess the variability of the
treatment effect under a limited range of soil and climate
conditions. Is this caveat fatal to useful generalization?)

SED =

√
2

3
(2.19 +

12.2

4
)

I For treatment means (average of 3 plots)

SE =

√
1

3
(2.19 +

12.2

4
) (generalize to different plots)

SE =

√
4.08 +

1

3
(2.19 +

12.2

4
) (generalize to different block)



Checking Normality Assumptions

obj <− lmer(yield ~ 0 + shade + (1 | block/shade), kiwishade)
eff <− "shade:block"
obseff <− ranef(obj, drop=TRUE)[[eff]]
simvals <− simulate(obj, nsim = 3)
ranef(refit(kiwi.lmer, data.frame(simvals)[,1]), drop=TRUE)[[eff]]

3 sets of simulated effects
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Checking Normality Assumptions – Notes

The variance of the plot random effects is estimated with low
accuracy. The data are consistent with a zero variance. Thus, the
slope in the Q-Q plot of simulated effects against means of quantiles
from 20 simulations varies widely. For a substantial fraction of
simulations, points lie on a line that is very nearly vertical. My
function diagmer() can be used to do repeated simulations.



SEs for Fixed Effect Estimates

Random effects:
Groups Name Variance Std.Dev.
shade:block (Intercept) 2.19 1.48
block (Intercept) 4.08 2.02
Residual 12.18 3.49
Number of obs: 48, groups: shade:block, 12; block, 3

Fixed effects:
Estimate Std. Error t value

(Intercept) 100.20 1.76 56.9
shadeAug2Dec 3.03 1.87 1.6
shadeDec2Feb -10.28 1.87 -5.5
shadeFeb2May -7.43 1.87 -4.0

NB: (Intercept) is the mean for shadenone. Other treatment
effects are differences from shadenone as reference.



Marvellous mcmcsamp() (MCMC)

> kiwi.mcmc <- mcmcsamp(kiwi.lmer, n=1000)
> HPDinterval(kiwi.mcmc, prob=0.95)
. . . .

lower upper
(Intercept) 95.924 104.79 #[c.f. (95.9, 106.1)]
shadeAug2Dec -0.432 6.28 #[c.f. (-1.5, 7.6)]
shadeDec2Feb -13.955 -6.89 #[c.f. (-14.9, -5.7)]
shadeFeb2May -10.983 -3.93 #[c.f. (-12.0, -2.9)]
. . . .
$ST #[multipliers for sigma]

lower upper
[1,] 0 0.61
[2,] 0 1.86
. . . .
$sigma

lower upper
[1,] 2.89 4.51
[1] 0.95



Alternative Formulation – one fixed factor only

> (kiwi.lmer <- lmer(yield ~ 0+shade + (1|block/shade),
data=kiwishade))

. . . .
Random effects:
Groups Name Variance Std.Dev.
shade:block (Intercept) 2.1863 1.4786
block (Intercept) 4.0779 2.0194
Residual 12.1828 3.4904
Number of obs: 48, groups: shade:block, 12; block, 3

Fixed effects:
Estimate Std. Error t value

shadenone 100.203 1.762 56.88
shadeAug2Dec 103.233 1.762 58.61
shadeDec2Feb 89.921 1.762 51.05
shadeFeb2May 92.774 1.762 52.67



Slots and extractor functions

> slotNames(kiwi.lmer)
[1] "env" "nlmodel" "frame" "call" . . . .
> kiwi.lmer@call
lmer(formula = yield ~ 0 + shade + (1 | block/shade),

data = kiwishade)

Mostly, use extractor functions:

resid(), fitted(), VarCorr(), ranef(), mcmcsamp(),
print(), summary()



Heterogeneous Variances? – Machines & Operators

> form1 <- score ~ Machine + (1 | Worker)
> lmer(lmer(form1, data=Machines)
. . . .
Random effects:
Groups Name Variance Std.Dev.
Worker (Intercept) 26.5 5.15
Residual 10.0 3.16
Number of obs: 54, groups: Worker, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 52.36 2.23 23.49
MachineB 7.97 1.05 7.56
MachineC 13.92 1.05 13.21

Machines is from the MEMSS package.



Machines – General random var-cov structure

> form2 <- score ~ Machine + (Machine | Worker)
> lmer(form2, data=Machines)
. . . .
Random effects:
Groups Name Variance Std.Dev. Corr
Worker (Intercept) 16.641 4.079

MachineB 34.547 5.878 0.484
MachineC 13.615 3.690 -0.365 0.297

Residual 0.925 0.962
Number of obs: 54, groups: Worker, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 52.36 1.68 31.15
MachineB 7.97 2.42 3.29
MachineC 13.92 1.54 9.04



> form3 <- score ~ Machine + (1 | Worker) +
+ (0+as.numeric(Machine=="B") | Worker) +
+ (0+as.numeric(Machine=="C") | Worker)
> lmer(form3, data=Machines)
. . . .
Random effects:
Groups Name Variance Std.Dev.
Worker (Intercept) 16.600 4.074
Worker as.numeric(Machine == "B") 34.684 5.889
Worker as.numeric(Machine == "C") 13.301 3.647
Residual 0.926 0.962
Number of obs: 54, groups: Worker, 6

Fixed effects:
Estimate Std. Error t value

(Intercept) 52.36 1.68 31.19
MachineB 7.97 2.43 3.28
MachineC 13.92 1.52 9.14



Comparison with over-dispersed GLM (quasibinomial)

Here, use the “sum” contrasts, and compare with the overall mean.

glmer quasibinomial
Est SE z Est SE (binomial SE) t

(Intercept) -2.32 0.22 -10.5 -2.33 0.21 (.14) -11.3
Period1 -0.66 0.32 -2.1 -0.72 0.45 (.31) -1.6
Period2 0.93 0.18 5.0 1.06 0.26 (.17) 4.2
Period3 -0.07 0.23 -0.3 -0.11 0.34 (.23) -0.3
Period4 -0.20 0.25 -0.8 -0.24 0.36 (.24) -0.7

The SEs (really SEDs) are not much increased from the binomial
model. The estimates of treatment effects (differences from the
overall mean) are however substantially reduced (pulled in towards the
overall mean). The net effect is that the z-statistic is smaller for the
glmer model than the t for the quasibinomial model.
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