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w xIn 1 the author introduced an arithmetic analogue of derivations,
called p-derivations; this concept was used to prove a series of arithmetic

w xanalogues of results about algebraic differential equations 1, 2, 3 . Al-
though the usefulness of this concept is probably well illustrated by these
papers, the question arises of how ‘‘natural’’ these p-derivation operators
are and what other choices one has in defining arithmetic analogues of
‘‘usual’’ derivations. The present note is an attempt to answer this ques-
tion: we will introduce an a priori quite general notion of jet operator on a
ring and prove that any such operator on a local domain of characteristic
zero is ‘‘equivalent’’ to one of the following: a difference operator, a

Žderivation operator, a p-difference operator cf. the definition in the
. w xfollowing text , or a p-derivation operator in the sense of 1 . The first

three kinds of operators are always trivial on the rational integers; so one
w xis left with the fourth kind, i.e., with the p-derivations of 1 , as the ‘‘only’’

possibility, within our paradigm, for an arithmetic analogue of usual
derivations. Throughout this paper rings are always assumed to be commu-
tative, with unit element, and all ring homomorphisms preserve units.

DEFINITIONS. Let A be a ring. A set theoretic map d : A ª A will be
called an operator on A if there exist two polynomials S, P g

w xA X , X , Y , Y such that for any x, y g A we have0 1 0 1

d x q y s S x , x d x , d yŽ . Ž .
d xy s P x , y , d x , d y .Ž . Ž .
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Ž .We say that d and the pair S, P belong to each other. We say that d is
w xgeneric on A if, whenever F g A X , X is a polynomial such that0 1

F x , d x s 0, x g A ,Ž .
we must have F s 0. By a generic extension of d we understand an

˜ ˜operator d on a ring extension A of A such that the following hold:

˜1. d coincides with d on A,
˜Ž .2. There exists a pair S, P belonging to both d and d , and

˜ ˜3. d is generic on A.

Ž . Ž .An operator d on A will be called a jet operator if d 0 s d 1 s 0 and
Žd admits a generic extension. The terminology will be justified by the

.Remark in the following text.
Two operators d , d : A ª A are said to be equï alent if there exist an1 2

= w x Ž .invertible element l g A and a polynomial f g A X such that f 0 s
Ž .f 1 s 0 and

d x s l ? d x q f x , x g A.Ž . Ž . Ž .1 2

If d and d are equivalent then d is a jet operator if and only if d is a1 2 1 2
jet operator.

Ž .EXAMPLES. There are four remarkable series of operators which we
want to single out; under very mild assumptions on A these operators are

Ž .actually jet operators cf. the Remark in the following text . In what
follows A will be any ring.

Ž .a Recall that a map d : A ª A is called a difference operator if it
satisfies

d x q y s d x q d yŽ .
d xy s x d y q y d x q d x d y.Ž .

If A has no nontrivial idempotents then d is a difference operator if and
only if the map x ¬ x q d x is a ring homomorphism. Difference operators

w x Žare the basis for ‘‘difference algebra’’ 5, 4 . In these references difference
operators are simply defined to be ring homomorphisms; for A without
nontrivial idempotents, the two definitions lead, of course, to equivalent

Ž . .theories. We preferred a definition in which d 1 s 0.
Ž .b Recall that a map d : A ª A is called a derï ation if it satisfies

d x q y s d x q d yŽ .
d xy s x d y q y d xŽ .

w xDerivations are the basis for differential algebra 8, 6 .
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Ž .c Let p g A be noninvertible. A map d : A ª A will be called a
p-difference operator if it satisfies

d x q y s d x q d yŽ .
d xy s x d y q y d x q p d x d y.Ž .

If A has no nontrivial idempotents and p is a nonzero divisor then d is a
p-difference operator if and only if the map x ¬ x q p d x is a ring
homomorphism.

Ž .d Let p g A be noninvertible, assume p * g A is such that pp * s
p where p is a prime integer, and let q / 1 be an integer power of p.
Consider the polynomial with integral coefficients,

qq qC X , Y s X q Y y X q Y rp.Ž . Ž .Ž .q

w xA map d : A ª A will be called a p-derï ation 1 if it satisfies

d x q y s d x q d y q p *C x , y ,Ž . Ž .q

d xy s x q d y q y q d x q p d x d y.Ž .

If A has no nontrivial idempotents and p is a nonzero divisor then d is a
p-derivation if and only if the map x ¬ x q q p d x is a ring homomor-
phism.

Remark. If A has no nontrivial idempotents and p is a nonzero divisor
then all operators d considered in the foregoing examples are jet opera-

Ž . Ž .tors. Indeed for any such d one trivially checks that d 0 s d 1 s 0. On
the other hand, if d is of one of the four kinds of operators considered in
the previous examples, then we may consider the ring,

˜ X Y Žn.w xA [ A T , T , T , . . . , T , . . . ,

of polynomials in infinitely many indeterminates and we may extend d to
˜ ˜an operator d on A, of the same kind, such that

d T s T X , d T X s TY , . . . , d T Žn. s T Žnq1. , . . . .

The possibility of the extension is well known and trivial to check in
Ž . Ž . Ž w x w x.examples a and b cf. Cohn 5 and Ritt and Kolchin 8, 6 , and it is also

Ž . Ž .trivial to check in examples c and d . Indeed, consider the ring homo-
Ž . Ž . Ž . qmorphism f : A ª A, f x s x q p d x in case c and f x s x q p d x

˜ ˜Ž .in case d , extend f to a ring endomorphism f of A by letting

˜ Xf T s T q p T ,Ž .
˜ X X Y ˜ Žn. Žn. Žnq1.f T s T q p T , . . . , f T s T q p T , . . . ,Ž . Ž .
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Ž .in case c and

˜ q Xf T s T q p T ,Ž .
qqX X Y Žn. Žn. Žnq1.˜ ˜f T s T q p T , . . . , f T s T q p T , . . . ,Ž . Ž . Ž . Ž .

˜ ˜ ˜ ˜ ˜Ž . Ž . Ž Ž .in case d , and finally define d : A ª A by the formula d f s f f y
˜ ˜ q. Ž . Ž . Ž Ž . . Ž .f rp in case c and d f s f f y f rp in case d . These formulae

˜make sense since we assumed that p is a nonzero divisor in A. Now d is
˜ w̃ x Ž .generic on A. Indeed assume F g A X , X is such that F x, d x s 0 for˜ ˜0 1

˜ X Y Žn.w xw xall x g A. Then let n be such that F g A T , T , T , . . . , T X , X and˜ 0 1
take x s T Žnq1. to conclude that F s 0.˜

w X Y Žn. xThe ring A T , T , T , . . . , T , . . . should be viewed as the ‘‘ring of jets
of the affine line’’; this justifies our terminology.

It is worth noting that, in case A s Z, Z , Z , p s p, of the four kindsŽ p. p
of operators in the preceding text, p-derivations are the only nontrivial
Ž .i.e., nonidentically zero ones.

Here is our main result.

THEOREM. Assume A is a local integral domain of characteristic zero.
Then any jet operator on A is equï alent to one of the following: a difference
operator, a derï ation operator, a p-difference operator, or a p-derï ation
operator.

Ž .COROLLARY. Any jet operator on Z or on Z is equï alent to eitherŽ p. p
d s 0 or to an operator d of the form,

x y x p m

d x s .
p

The rest of the paper is devoted to the proof of the theorem. We start
with a useful lemma.

LEMMA 1. Let A be any ring. Assume d : A ª A is an operator and d :
˜ ˜ w̃ xA ª A is a generic extension. Assume F g A X , . . . , X , X , . . . , X1, 0 m , 0 1, 1 m , 1

is a polynomial in 2m ¨ariables such that

˜ ˜F x , . . . , x , d x , . . . , d x s 0,˜ ˜ ˜ ˜ž /1 m 1 m

˜for all x , . . . , x g A. Then F s 0.˜ ˜1 m

Proof. Trivial, by induction on m.

Note that the lemma immediately implies that, in its hypothesis, there
˜Ž .exists exactly one pair S, P belonging to both d and d .
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LEMMA 2. Let A be any ring. Assume d : A ª A is a jet operator and d :
˜ ˜ Ž . Ž .A ª A is a generic extension. Let S, P be the unique pair belonging to d

˜and d . Then for any A-algebra B, the formulae,

x , x q y , y s x q y , S x , y , x , y , 1Ž . Ž . Ž . Ž .Ž .0 1 0 1 0 0 0 0 1 1

x , x ? y , y s x y , P x , y , x , y , 2Ž . Ž . Ž . Ž .Ž .0 1 0 1 0 0 0 0 1 1

define a ring structure on B = B such that the zero and unit elements in B = B
Ž . Ž .are 0, 0 and 1, 0 , respectï ely.

Proof. Let us check for instance that the addition on B = B is associa-
tive. We must check that the following two polynomials in 6 variables,

S X q Y , Z , S X , Y , X , Y , Z andŽ .Ž .0 0 0 0 0 1 1 1

S X , Y q Z , X , S Y , Z , Y , ZŽ .Ž .0 0 0 1 0 0 1 1

are equal. By Lemma 1, it is sufficient to check that the previous polyno-
mials become equal when X , Y , Z , X , Y , Z are substituted by0 0 0 1 1 1

˜ ˜ ˜ ˜x, y, z, d x, d y, d z, for any x, y, z g A. However, under this substitution,˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜
˜Ž .both polynomials become d x q y q z .˜ ˜ ˜

The rest of the ring axioms, including the statement about the zero and
Ž . Ž .the unit being 0, 0 and 1, 0 , can be proved similarly. By the way, the

inverse for addition is given by

y x , x s yx , P y1, x , d y1 , x .Ž . Ž .Ž .Ž .0 1 0 0 1

Ž . Ž . Ž .Remark. If in Lemma 2 we start with one of the examples a , b , c ,
Ž .d then the ring structures on B = B one gets are familiar ones. In the

Ž .case of example a the ring structure on B = B is isomorphic to the
Ž .twofold product of B in the category of rings. In the case of example b

the ring structure on B = B is, of course, isomorphic to the ring structure
w x Ž 2 . Ž .on the dual numbers B t r t . In the case of example d the ring

structure on B = B is a version of what one calls ‘‘ramified Witt vectors.’’
Ž .Case c leads to a similarly familiar ring.

1 w x 2 w xLet A be any ring and let A s Spec A X , A s Spec A X , X beA 0 A 0 1
Ž .the affine line and the affine plane over A. Denote by S A the set of all

ring A-scheme structures on A2 such that the first projection pr : A2 ªA 1 A
A1 is a ring A-scheme homomorphism and such that the zero and the unitA

2 Ž . Ž . Ž .elements in A correspond to 0, 0 , 1, 0 . We can identify S A with theA
Ž . w xset of all pairs S, P where S, P g A X , X , Y , Y such that the formu-0 1 0 1

Ž . Ž .lae 1 and 2 in Lemma 2 define, for any A-algebra B, a ring structure on
Ž . Ž .B = B whose zero and unit are 0, 0 and 1, 0 .
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Ž .On the other hand, consider the group G A of all A-scheme automor-
2 Ž . Ž .phisms s of A that fix 0, 0 and 1, 0 , and for which pr (s s pr .A 1 1

Assume in addition that A is an integral domain of characteristic zero.
Ž .This will be the case we shall consider in applications. Then looking at
Jacobian matrices, one immediately sees that any such s is given by

x , x ¬ x , l x q f x ,Ž . Ž .Ž .0 1 0 1 0

= w x Ž . Ž .for some l g A and some f g A X with f 0 s f 1 s 0. So we can
Ž . = Ž 2 . w xidentify G A with A = X y X A X , the latter equipped with the

semidirect product group structure,

l , f ? l , f s l l , f q l f .Ž . Ž . Ž .1 1 2 2 1 2 1 1 2

Ž . Ž . Ž .Now G A acts on S A by transport of structure. Explicitly, if l, f g
Ž . Ž . Ž .G A and S, P g S A then we have

l, f ? S, P s SX , PX ,Ž . Ž . Ž .

where

X y1 y1S s lS X , Y , l X y f X , l Y y f Y q f X q Y ,Ž . Ž . Ž .Ž .0 0 1 0 1 0 0 0

3Ž .
X y1 y1P s lP X , Y , l X y f X , l Y y f Y q f X Y . 4Ž . Ž . Ž . Ž .Ž .0 0 1 0 1 0 0 0

Ž .Lemma 2 shows that, if S, P is the pair belonging to a jet operator d
Ž . Ž .on A and to a generic extension of it, then S, P g S A and the map

Ž . ŽA ª A = A, x ¬ x, d x is a ring homomorphism where the ring struc-
Ž . .ture on A = A is defined by S, P as in Lemma 2 . Conversely, if we are

Ž .given an operator  on A such that A ª A = A, x ¬ x,  x is a ring
Ž Ž .homomorphism where the ring structure on A = A is defined by S, P as

. Ž .in Lemma 2 then  belongs to S, P .
So, in order to prove our theorem it is enough to prove the following

PROPOSITION. Assume A is a local integral domain of characteristic zero.
Ž . Ž . Ž .Then any element in S A is G A -conjugate to a pair S, P belonging to the

following list

S s X q Y , P s X Y q Y X q X Y ,1 1 0 1 0 1 1 1

S s X q Y , P s X Y q Y X ,1 1 0 1 0 1

S s X q Y , P s X Y q Y X q p X Y ,1 1 0 1 0 1 1 1

S s X q Y q p *C X , Y , P s X q Y q Y q X q p X Y .Ž .1 1 q 0 0 0 1 0 1 1 1
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The element p in the last two pairs in the preceding equations is as in
Ž . Ž .the Examples c and d , respectively.

The first step in the proof of the proposition is the following observa-
tion. Assume A is as in the proposition and let K be its field of fractions.

Ž . Ž .LEMMA 3. Any element in S K is G K -conjugate to one of the pairs,

S s X q Y , P s X Y q Y X q X Y ,1 1 0 1 0 1 1 1

S s X q Y , P s X Y q Y X .1 1 0 1 0 1

Ž .Proof. Note that any element of S K defines, in particular, a commu-
2 Ž .tative algebraic group structure on A with zero element 0, 0 such thatK

the first projection to A1 is a morphism of algebraic groups. Since theK

kernel of the first projection is isomorphic, as a variety, to A1 , and since,K
by the theory of algebraic groups, any algebraic group structure on A1 isK
isomorphic to the usual additive group structure, it follows that our

2 w xalgebraic group A is an extension of the additive group by itself. By 9 , p.K
Ž . Ž .171, this extension is trivial. So any pair S, P g S K is conjugate, under

Ž . Ž X X. Xthe action of G K , to a pair S , P , where S s X q Y . By distributivity1 1
and commutativity in the ring structure axioms PX must be a bilinear
symmetric form, i.e.,

PX s a X Y q b X Y q X Y q g X Y .Ž .0 0 0 1 1 0 1 1

XŽ .Because P 1, Y , 0, Y s Y we get a s 0 and b s 1. If g s 0 then0 1 1
Ž X X. Ž .S , P s X q Y , X Y q Y X and we are done. If g / 0 note that1 1 0 1 0 1

SX , PX s gy1 , gy1 X X q Y , X Y q Y X q X Y ,Ž . Ž .Ž . 1 1 0 1 0 1 1 1

and we are done again.

Proof of the Proposition. By Lemma 3, there are two cases to examine
Ž . Ž .for a pair S, P g S A .

Ž . Ž . Ž .Case 1. S, P is G K -conjugate to X q Y , X Y q Y X .1 1 0 1 0 1
Ž . Ž .In this case we claim that S, P is actually G A -conjugate to

X q Y , X Y q Y X .Ž .1 1 0 1 0 1

Indeed write

S, P s l, f X q Y , X Y q Y X ,Ž . Ž . Ž .1 1 0 1 0 1

= Ž 2 . w x Ž . Ž .where l g K and f g X y X K X . By the formulae 3 , 4 we have

S s X q Y q f X q Y y f X y f Y ,Ž . Ž . Ž .1 1 0 0 0 0

P s X Y q Y X q f X Y y X f Y y Y f X .Ž . Ž . Ž .0 1 0 1 0 0 0 0 0 0
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The preceding formulae show that we may assume l s 1. Also, since P
has coefficients in A, it follows immediately that f has coefficients in A.

Ž . Ž .So l, f g G A and our claim is proved.

Ž . Ž . Ž .Case 2. S, P is G K -conjugate to X q Y , X Y q Y X q X Y .1 1 0 1 0 1 1 1
Write

S, P s l, f X q Y , X Y q Y X q X Y ,Ž . Ž . Ž .1 1 0 1 0 1 1 1

= Ž 2 . w x Ž . Ž .where l g K and f g X y X K X . By the formulae 3 , 4 we have

S s X q Y q f X q Y y f X y f Y , 5Ž . Ž . Ž . Ž .1 1 0 0 0 0

P s X Y q Y X y X f Y y Y f XŽ . Ž .0 1 0 1 0 0 0 0

y1q l X Y y X f Y y Y f X q f X f Y q f X Y .Ž . Ž . Ž . Ž . Ž .1 1 1 0 1 0 0 0 0 0

6Ž .

Ž . Ž .Setting f * X s f X y l X we obtain

y1P s l X Y y X f * Y y Y f * X q f * X f * Y q f * X Y .Ž . Ž . Ž . Ž . Ž .1 1 1 0 1 0 0 0 0 0

7Ž .

Since P has coefficients in A, looking at the coefficients of X Y and1 1
i y1 y1 w xX Y in f * we get that l g A and l f * g XA X .1 0

Ž . Ž .If l g A we have l, f g G A and we are done.
Hence we may assume from now on that l f A, i.e., p [ ly1 g M,

where M is the maximal ideal of A. Let us write f s f X q f X 2
1 2

q ??? qf X m.m
Ž .Assume for a moment that f g A for all i G 2. Since f 1 s 0 it followsi

that f g A as well. In this case note that1

1, yf S, P s X q Y , X Y q Y X q p X Y .Ž . Ž . Ž .1 1 0 1 0 1 1 1

Ž . Ž .Since 1, yf g G A we are done in this case.

So from now on we may assume that the following condition holds

There exists an index i G 2 such that f f A. 8Ž .0 i0

w xRecall that by a cocycle G g A X, Y one understands a polynomial G
that satisfies

G Y , Z y G X q Y , Z q G X , Y q Z y G X , Y s 0.Ž . Ž . Ž . Ž .
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w xBy the coboundary associated to a polynomial f g A X one understands
the polynomial in two variables,

f X , Y [ f X q Y y f X y f Y .Ž . Ž . Ž . Ž . Ž .
Ž .By 6 , since S has coefficients in A, it follows that

G X , Y [ f X q Y y f X y f YŽ . Ž . Ž . Ž .0 0 0 0 0 0

w xis a cocycle in A X , Y . We claim that M l Z / 0, for if the contrary0 0
w xholds then Q is contained in A so by 7 p. 257, Lemma 3, we must have

w xG s f for some f g A X . Hence f y f would be additive, hence
f y f would be a monomial of degree one and this contradicts assumption
Ž . w x8 . So we have M l Z s pZ for some prime integer p. By 7 loc. cit.

w xagain, there exist a polynomial f g A X and there exist a , a , a , . . . g A0 1 2
such that

G X , Y s f X q Y y f X y f YŽ . Ž . Ž . Ž .0 0 0 0 0 0

j j jpy1 p pq a p X q Y y X y Y .Ž .Ý j 0 0 0 0
jG1

Again it follows that the polynomial f y f y Ý a py1 X p j
is additive,jG1 j

hence it is a monomial of degree one. Hence we have pf g A for all i G 2.i
y1 Ž . 2 i0 i0Let p [ l . Since, by 7 , the coefficient p f q f of X Y in P is ini i 0 00 0

Ž . =A, and since A is local , we must have p f g A so we get p g p A. Seti0

w xF s yp f *. As we have seen F g A X and note that the reduction of F
Ž .w xmodulo p , F g Arp A X , has degree G 2 because the coefficient of

i0 Ž . Ž .X in F is invertible. Multiplying the equations 5 and 7 by p and
Ž . Ž . Ž .reducing modulo p we find that F X q Y s F X q F Y and0 0 0 0

Ž . Ž . Ž . Ž . ŽF X Y s F X F Y . The latter multiplicativity relation implies due0 0 0 0
m.to the fact that Arp A is local that F s X for some m. By further

reducing modulo M and using the additivity relation for F we get that
m s q / 1 is an integer power of p. Consequently, we may write F s X q

w x Ž .q p g, g g A X . Then a straightforward computation shows that S, P
equals

qy1 q q1, yg X q Y q p X q Y y X q Y ,Ž . Ž .ž 1 1 0 0 0 0

X q Y q Y q X q p X Y ./0 1 0 1 1 1

This completes the proof of the proposition and hence of the theorem.
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