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Abstract

The notion of aZ-algebra has a non-linear analogue, whose purpose it is to control operations
on commutative rings rather than linear operations on abelian groups. Pletkeriescan also
be considered non-linear generalizations of cocommutative bialgebras. We establish a number
of category-theoretic facts about plethories and their actions, including a Tannaka—Krein-style
reconstruction theorem. We show that the classical ring of Witt vectors, with all its concomitant
structure, can be understood in a formula-free way in terms of a plethystic version of an affine
blow-up applied to the plethory generated by the Frobenius map. We also discuss the linear
and infinitesimal structure of plethories and explain how this gives Bloch’s Frobenius operator
on the de Rham-Witt complex.
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Consider an example from arithmetic. Lptbe a prime number. Recall that for
(commutative) ringsR, the ring W(R) of (p-typical) Witt vectors is usually defined to
be the unique ring structure on the &t which is functorial inR and such that the map
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is a ring homomorphism, the target having the usual, product ring structureislfa
perfect field of characteristip, then W(R) is the unique complete discrete valuation
ring whose maximal ideal is generated pyand whose residue field iR. However,

in almost all other cased¥ (R) is pathological by the usual standards of commutative
algebra. For exampley (F,[x]) is not noetherian.

It is nevertheless an established fact th&{R) is an important object. For exam-
ple, if R is the coordinate ring of a smooth affine variety over a perfect field of
characteristicp, there is a certain quotient of the de Rham complexafR), called
the de Rham-Witt complex oR, whose cohomology is naturally the crystalline co-
homology of R. But it is not at all clear from the definition above what the proper
way to think aboutW(R) is, much less why it is even reasonable to consider it in
the first place. The presence of certain natural structure, for example, a multiplicative
map R — W(R) and a ring mapW (R) — W(W(R)) adds to the mystery. And so
we have a question: is there a definition given purely in terms of algebraic struc-
ture rather than somewhat mysterious formulas, and is there a point of view from
which this definition will be seen as routine and not the result of some intangible
inspiration?

The purpose of this paper is to discuss an algebraic theory of which a particu-
lar instance gives a formal answer to these questions and to write down some basic
definitions and facts. For any (commutative) rikgwe define ak-plethory to be a
commutativek-algebra together with a comonad structure on the covariant functor it
represents, much askaalgebra is the same askamodule that represents a comonad.
So, just as &-algebra is exactly the structure that knows how to act danaodule,

a k-plethory is the structure that knows how to act on a commutdtiségebra. It is
not so surprising that this analogy extends further:

Linear/ k Non-lineay k
k-modulesM Commutativek-algebrasR
k-k-bimodulesN k-k-birings S
Homy (N, M) Homk_a|g(S, R)
N &M SO R
k = ®-unit kle] = ©-unit
k-algebrasA k-plethoriesP
A-modules P-rings
A-A’-bimodules P-P’-birings

This is explained in Section 1. In fact, as Bergman has informed us, this picture
has been known in the universal-algebra community, under quite similar terminology
and notation, since Tall and Wraith’s pagé@®] in 1970. (See als¢23,2].) For those
familiar with their work, parts of the first sections will be very familiar.

The description of the ring of Witt vectors from this point of view is that there is
a Z-plethory 4, and W(R) is simply theA,-ring co-induced from the rin@R (which
observation allows us to define a Witt ring for any plethory), and so the only thing left
is to give a natural construction of,,. This is done by a process we calnplification
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and which is formally similar to performing an affine blow-up in commutative algebra.
We will give some idea of this procedure below.

In Section 2, we give some examples of plethories. The most basic is the symmetric
algebraS(A) of any cocommutative bialgebr; in particular, if A is a group algebra
ZG, thenS(A) is the free polynomial algebra on the set underly@agThese plethories
are less interesting because their actions on rings can be described entirely in terms
of the original bialgebra\; for example, an action of the pletho§(ZG) is the same
as an action of the grou@®. But even in this case, there can be more maps between
two such plethories than there are between the bialgebras, and in some sense, this is
ultimately responsible for existence df, and hence the-typical Witt ring.

The ring A of symmetric functions in infinitely many variables is a better example.
The composition law of1 is given by the operation known as plethysm in the theory
of symmetric functions and is what gives plethories their name. An action ofh a
ring R is the same as a-ring structure orR, and in contrast to plethories of the form
S(A), a A-action cannot in general be described in terms of a bialgebra action. We
also give an explicit description ofl ,, the plethory responsible for thetypical Witt
ring, in terms of symmetric functions. Of course, this description is really quite close
to a standard treatment of the Witt ring and is still a bit unsatisfying. In Section 3, we
give explicit examples oP-Witt rings for various plethorie$.

In Section 4, we discuss the restriction, induction, and co-induction functors for a
morphism P — Q of plethories, and we state the reconstruction theorem. As always,
the content of such a theorem is entirely category theoretic (Beck’s theorem). All the
same, the result is worth stating:

Theorem. Let C be a category that has all limits and colimiteet U be a functor
from C to the category of rings. If U has both a left and a right adjoint and has
the property that a map f irC is an isomorphism iU (f) is, then C is the category

of P-rings for a unique k-plethory ,Pand under this identificatignU is the forgetful
functor from P-rings to rings

In Section 7, we explain amplification, the blow-up-like process we mentioned above.
Let O be a Dedekind domain, for example the ring of integers in a local or global
field or the coordinate ring of a smooth curve. Lt be an ideal inO, let P be
an O-plethory, letQ be an O/m-plethory, and letP — Q be a surjective map of
plethories. We say #&-ring R is a P-deformation of a Q-ringf it is m-torsion-free
and the action oP on R/mR factors through the map — Q.

Theorem. There is anO-plethory P’ that is universal among those that are equipped
with a map from P making them P-deformations of Q-rings. FurthermBfehas the
property that P-deformations of Q-rings are the samePRigings that arem-torsion-
free

We say P’ is the amplification ofP along Q.

In Sections 8-11, we define what could be called the linearization of a plekhdty
involves two structuresa p, the set of elements d? that act additively on any-ring,
and Cp, the cotangent space to the spectrumPoét 0.
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Theorem. Both Ap and Cp are (generally non-commutatiyealgebras equipped with
maps from kand under certain flatness or splitting hypothegée following hold A p
is a cocommutative twistedikalgebrg there is a coaction ofdAp on the algebraCp,
and the mapAp — Cp is Ap-coequivariant

We stop short of investigating representations of such linear structures.

If R — R’ is a map ofP-rings with kernell, then all that remains on the conormal
module/I? of the action ofP is an action ofCp. In particular,Cp acts on the Kahler
differentials of anyP-ring. In the special case wheh = 4, and R = W(S), for some
ring S this additional structure is essentially a lift of Bloch’s Frobenius operator on
the de Rham-Witt complex.

The final section of the paper is the reason why the others exist, and we encourage
the reader to look at it first. Here, we considé and other classical constructions
from the point of view of the general theory. For example, we give a satisfying con-
struction of4,: Let F,(e) be the trivialF ,-plethory; its bialgebra of additive elements
has a canonical deformation to Zbialgebra, and lefP be the freeZ-plethory on
this. ThenA, is the amplification ofP along F,(e). Essentially the same procedure,
applied to rings of integers in general number fields, gives at once ramified and twisted
generalizations.

An action of this amplification on p-torsion-free ringR is, essentially by definition,
the same as a lift of the Frobenius endomorphisnRgpR. The content of the state-
ment that thed ,-ring co-induced byR agrees with the classical (R) is ultimately just
Cartier's Dieudonné—Dwork lemma. Thus it would be accurate to view amplifications
as the framework where Joyal's approach to the classical Witt veft@jsnaturally
lives.

The last section also has explicit descriptions of the linearizationd of A4, and
similar plethories.

On a final note, this paper does not even contain the basics of the theory, and there
are still many simple mysteries. For example, the existence of non-linear plethories,
those that do not come from (possibly twisted) bialgebras, may be a purely arithmetic
phenomenon: we know of no non-linear plethory ovelQaalgebra. For a broader
example, the category d?-rings is, on the one hand, a generalization of the category
of rings and, on the other, an analogue of the category of modules over an algebra. And
so it is natural to ask which notions in commutative algebra and algebraic geometry
can be generalized te-rings for generaP and, in the other direction, which notions in
the theory of modules over algebras have analogues in the theory actions of plethories
on rings. It would be quite interesting to see how far these analogies can be taken.

0. Conventions

The wordring is short for commutative ring, but we make no commutativity restric-
tion on the wordalgebra A k-ring is then a commutativ&-algebra. All these objects
are assumed to be associative and unital, and all morphisms are &iifgl. denotes
the category ofk-rings.
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We use the language of coalgebras extensiveBsdlescu, Nishisescu, and Raianu’s
book [5] is more than enough.

For categorical terminology, we refer to Mac Lane’s bgb&]. In particular, we find
it convenient to writeC(X, Y) for the set of morphisms between obje2tandY of a
categoryC.

N denotes the s€f0, 1, 2, .. .}.

1. Plethories and the composition product

Let k, k', k" be rings.
A k-k-biring is a k-ring that represents a functdting; — Ring;. Composition of
such functors yields a monoidal structure on the categotlebirings. We then define
a k-plethory to be a monoid in this category, much as one could defikalgebra to
be a monoid in the category &tk-bimodules. Finally, the category &fk-birings acts
on the category ok-rings, and we define B-ring to be a ring together with an action
of the k-plethory P.
We spell this out in some detail and give a number of immediate consequences of the
definitions. We also give many examples in this section, but they are all trivial, and so
the reader may want to look ahead at the more interesting examples in Sections 2 and 3.

1.1. A k-k’-biring is ak-ring S together with a lift of the covariant functor it represents
to a functorRing, — Ring;,. Equivalently, it is the structure o8 of a k’-ring object in
the opposite category dRing,. Or in Grothendieck’s terminology, this is the structure
on SpecdS of a commutativek’-algebra scheme over SpecExplicitly, Sis a k-ring
with the following additional maps (all ofk-rings except (3)):

(1) coaddition a cocommutative coassociative mag: S — S ®; S for which there
exists a counit*: S — k and an antipode: S — S,

(2) comultiplication a cocommutative coassociative mdp: S — S®; S which codis-
tributes over4™ and for which there exists a counit: § — k,

(3) cok’-linear structure a mapp: k" — Ring, (S, k) of rings, where the ring structure
on Ring, (S, k) is given by (1) and (2).

Note that, as usuak™, ¢, and &> are unique if they exist. Also note that omitting
axiom (3) leaves us with the notion &fZ-biring. Finally, in the case ok-plethories,
we will take k = &/, but at this point it is best to keep the roles separate.

A morphism of k-k’-birings is a map ofk-rings which preserves all the structure
above. The category dé-k’-birings is denotedR; ;. Given a mapk” — k', we can
view a S as ak-k”-biring, which we still denoteS, somewhat abusively.

Let ¢ and ¢’ be rings, and lefl be a¢-¢'-biring. A morphismS — T of birings is
the following data: a ring map — ¢, a ring mapk’ — ¢’, and a mag®; S — T of ¢-
k’-birings. The category of birings is denot&®R. When necessary, we will distinguish
the structure maps of birings by using subscript§; e, and so on. We will also often

use without comment the notatiofi*p = )", pl-(l) ® p}z) andA*p =7, pl[l] ® pl[z].
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1.2. Examples.

(1) k itself is the initial k-k’-biring, representing the constant functor giving the zero
ring.

(2) Let k(e) denote thek-k-biring that represents the identity functor &ing,. Thus
k(e) is canonically the ringt[e] with AT (¢) = e®@1+1®e, 4% (e) = e®e, f(c)(e) =
c (andeT(e) =0,e*(e) = 1, a(e) = —e).

(3) If ¥’ is finite, then the collection of set map§— k is naturally ak-k’-biring. The
k-ring structure is given by pointwise addition and multiplication, and the coring
structure is given by the ring structure @h For example, A is the composite
KK — kKK = kK @ kK where the first map is given by addition @h If k' is not
finite, there are topological issues, which could surely be avoided by considering
pro-representable functors froRing; to Ring,. .

Recall that the action of k-algebraA on ak-moduleM can be given in three ways:
asamapA® M — M, as a mapl — Modi (A, M), or as a mapA — Mody (M, M).
In fact, we have the same choices when defining the multiplication mapitself. The
Witt vector approach to operations on rings follows the second, comonadic model, but
we will follow the first, monadic one. The third approach encounters the topological
problems mentioned in the example above.

We now define the analogue of the tensor product.

1.3. Functor — O —: BR; ¢ x Ring, — Ring;. Take S € BR; x» and R € Ringy,. Then
S O R is defined to be thé-ring generated by symbols® r, for all s € S,r € R,
subject to the relations (for all, s’ € S,r,r" € R,c € k')

ss' Or=60nN6s"or), G+sor=60o0rn+6'or), coOr=c (1.31)
and

SO+ =456 r) =y P one® or),

1

sO0r) =456 r) =Y MoneP or),

s O c=f)(s). (1.3.2)

This operation is called theomposition productnd is clearly functorial in bottR
and S

As in linear algebra, where a tenser® b reminds us of the formal composition of
operatorsa and b or the formal evaluation of an operatarat b, the symbols © r
is intended to remind us of the compositier r of possibly non-linear functions or
the formal evaluation of a functios at r. Thus the meaning of (1.3.1) is that ring
operations on functions are defined pointwise, and the meaning of (1.3.2) is that there
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is extra structure on our ring of functions that controls how they respect sums, products,
and constant functions. For example,Sfis the biring of 1.2(3), the evaluation map
S O k' — k given bys O r — s(r) is a well-defined ring map.

1.4. Proposition. Let S be a ¥’-biring. The functorS @, — is the left adjoint of
Ring, (S, —).

In other words, forR; € Ring;, Rz € Ring,, we have
Ring; (S O Rz, R1) = Ringy (Rz. Ring, (S, R1)).

The proof is completely straightforward. We leave it, as well as the task of specifying
the unit and counit of the adjunction, to the reader.

1.5. Examples.

(1) There are natural identification$©y k'{e) = S, k'{e) O R = R, S Op k' =k,
andk Oy R = k.

(2) If ¥ — ¢ is a ring map, thert’(e) O R = £’ Q4 R.

(3) k-¢’-biring structures orS compatible with the giverk-k’-biring structure are the
same, under adjunction, as map®; ¢ — k of k-rings.

(4) If k — ¢ is a ring map, we havel ®; S) O R = £ ®; (S O R).

(5) The composition product distributes over arbitrary tensor products:

(®si) o k=@ (S o R,
S O <® Ri) = ® (S Or R;).

1.6.If Ris not only ak’-ring but ak’-k”-biring, then the functor
Ring; (S ©r R, —) = Ringy (R, Ring, (S, —))

naturally takes values ik”-rings, and s&8©y R is naturally ak-k”-biring. One can also
see this directly in terms of the structure maps and so on by using the fact that the
composition product distributes over tensor productst # k' = k”, the composition
product gives a monoidal structure on the categork-&fbirings with unitk(e) = k[e]

of 1.2. As is generally true with composition or the tensor product of bimodules, this
monoidal structure not symmetric.

1.7. Remark. Note that, in contrast to the analogous statement for bimodules, it is
generally not true that &-k”-biring structure onR inducesk’-k”-biring structure on
the k-ring Ring, (S, R).
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1.8. A k-plethoryis a monoid in the category d&-k-birings, that is, it is a biringP
equipped with an associative map of biringsP ©; P — P and unitk(e) — P. For
example,k(e) = k[e] with o taken as in 1.5(1) (that is, composition of polynomials)
is a k-plethory. The image o under the unit magk(e) — P is denotede (or ep);
together witho, it gives the set underlying a monoid structure. The ring is called
the ring of scalarsof P.

If P’ is ak’-plethory, a morphismP — P’ of plethories is a morphismd — &’
plus a morphismp: P — P’ of birings which is also a morphism of monoids. This is
equivalent to requiring that

o1
kK'(e)yOr POy P —— P' Or P == P' O k'(e) Ok P
10¢
100 P O P’
®
KOy P ——— kK @y P P’

be a commutative diagram df-k-birings. If k = &/, the diagram simplifies to the
obvious one. If we are already given a map-> k', then we will always assume the
map of scalars is the same as the given map. It is easy to seé&(thas the initial
k-plethory andZ(e) is the initial plethory.

1.9. A (left) action of P on ak-ring R is defined as usual in the theory of monoidal
categories; in this case it means a map © R — R such that(zof)or = ao(fior)
andeor =r for all o, € P,r € R. We also denote:or by a(r). A P-ring is a
k-ring equipped with an action d?. (There is no danger of a conflict in terminology
with a ring equipped with a ring map frof because we never use such structures in
this paper.) A morphism oP-rings is a map of rings that makes the obvious diagram
commute; equivalently, it is a map of rings thatRsequivariant as a map of sets acted
on by the monoid P, o). The category ofP-rings is denotecRingp.

If Sis ak-k’-biring, we sayP acts on Sas ak-k’-biring if o: PO S — S is a map of
k-k’-birings. Such an action is the same as a functorial collectiok’-oing structures
on the setRingp (S, R) such that the mapRingp (S, R) < Ring; (S, R) are maps of
k'-rings.

A right action of a k’-plethory P’ on a k-k’-biring is a mapo: R ©y P’ — R of
k-k’-birings compatible witho and e in the obvious way. A map of right’-rings
is P’-equivariant map ok-k’-birings. A P-P’-biring is a k-k’-biring equipped with a
left action of P as ak-k’ biring and a commuting right action aP’. The category
of P-P’-birings is denotedBRp p/, morphisms being maps of birings that are both
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P-equivariant andP’-equivariant. AP-P’-biring is the same as a represented functor
Ringp — Ringp/.

1.10. A k-plethory structure on &-k-biring P is the same as a monad structure on
the functor P ®; — and, by adjunction, also the same as a comonad structure on the
functor Ring, (P, —). An action of P on R is the same as the structure &of an
algebra over the monad or a coalgebra over the comonad.

Thus Ringp has all limits and colimits, the forgetful functav: Ring, — Ring,
preserves them, and the functaPso; — and Ring, (P, —) lift to give left and, respec-
tively, right adjoints toU. (These functors could well be called restriction, induction,
and co-induction for the map(e) — P. We postpone the treatment of these functors
for general maps of plethories until section four.) In particular, the underligingg
of a (co)limit of P-rings is the (co)limit in that category and there exists a unique
compatibleP-ring structure on it. We give a converse to all this in Secton

We often denote the functd®ing, (P, —) by Wp(—) and call theP-ring Wp(R) the
P-Witt ring of R. The reason for this terminology will be made clear in Section

1.11. Examples.

(1) If k is finite, the biring of set map& — k is a k-plethory, with o given by
composition of functions. In particular, 0 is a plethory over the ring 0. It is the
terminal plethory, and of course the only O-ring is O.

(2) A plethory P clearly acts on itself on the left (and also the right). It is in fact
the freeP-ring on one element: morphisms Ring, from P to another object are
the same as elements of the underlying ring, a mpap — R corresponding to
the elementp(e) in R, and an element € R corresponding to the mapr— a(r).
The morphismsP — k corresponding to- = 0 andr = 1 aree™ and ¢*. More
generally, the morphisn? — k corresponding ta € k is f(c).

(3) The identificationP ©y k = k is an action ofP on k, and if R is any P-ring, the
structure mapk — R is a map ofP-rings simply by the third relation of (1.3.2).
Therefore,k is the initial P-ring. Similarly, the identificationk ©x P = k givesk
the structure of &-P-biring, and it is the initialP-P-biring.

(4) If ¥’ is aP-ring, the naturak’-map

(K @k P)Or k' =k ® (P O k') — k'

gives (by 1.5)k’ ® P the structure of &’-k’-biring. We will see below that’ ®; P
even has a naturdl'-plethory structure.

1.12. Proposition. Let P be a k-plethory. Then the k-ring morphism$, 4%, ¢},
and ¢, are in fact P-ring morphisms. For any € Ringp, the unitn,:k — A and
multiplication m4: A ®, A — A are P-ring morphisms

Proof. The unit and counits were discussed in 1.11(3) and (2). Multiplication is the
coproduct of the identity with itself.
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By 1.11(2), theP-ring P represents the forgetful functdy’ from Ring, to the
category of sets an® ®; P represents the functdy’ x U’. But these factor through
the category of rings, and so there are natural transformatins U’ — U’, one
for addition and one for multiplication. Thus there are maps> P ®; P in Ringp.
The one for addition is the map that senel$o 1® ¢ + ¢ ® 1, and thus sends to
AT (@)(1® e, e ®1) = AT (x). Similarly, the one for multiplication ist*. O

1.13. Base change of plethorie$f. ¥’ is a P-ring, then thek’-k-biring ¥’ ®; P has a
k’-k’-biring structure (1.11). Even further, tté-ring map (using 1.5(4))

1®0
(K @ P) O (K @ P) = K @ (P Ok (K @ P)) ~5 k' @ (K @ P) —> k' ® P
descends to a map
(k' @i P) Op (k' @ P) — k' @ P,

which givesk’ ®; P the structure of &’-plethory.

Conversely, ifk’ ® P is ak’-plethory, thenP acts onk’ by way of k¥’ ® P. Note that
not only does the plethory structure @h® P depend on the action d® on k', there
may not exist even one such action. For example, there is no action &-fhethory
Ay (of 2.13) onF,.

We leave it as an exercise to show that’a& P-action on ak’-ring R is the same
as aP-action on the underlyind-ring compatible with the given action of.

2. Examples of plethories

Before continuing with the theory, let us give some basic examples of plethories.
2.1. Free plethory on a biringLet k be a ring, and leSS be ak-k-biring. There is a
plethystic analogue of the tensor algebra&-lethory Q, with a k-k-biring map$S — 0,

which is initial in the category of such plethories.
Put

Q=®S©n,

n=0
The system of maps
S(Di o) S@j — S@(H‘./)

(510 05)0 (O 01) > 51005010 - Ot
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induces a map

000=Q) 505 — Qs =0,
ij n
which is clearly associative. This gived the structure of &-plethory with a map
k(e) = S0 — O of k-plethories.
A Q-action on a ringR is then the same as a ma&® R — R of rings.

2.2. Free plethory on a cocommutative bialgebrgirst, let A be a cocommutative
coalgebra overk; denote its comultiplication map byl and its counit bye. The

symmetric algebraS(A) of A, viewed as ak-module, is of course &-ring, but the

following gives it the structure of &-k-biring:
Coadditive structureThe coaddition mapi™ is the one induced by the linear map

A—>SA)R®SA), a—~a®l1l+1®a.

The additive counit™: S(A) — k is the map induced by the zero map— k.

Comultiplicative structure 4™ is the map induced by the linear map

AL A A— S(A)® SA),

where the right map is the tensor square of the canonical inclusion. The multiplicative
counite*: S(A) — k is the composite map

X
Eke)

S(A) 29 sk = k(e) 29 .
Co-k-linear structure The map
S(A) Oz k—k(e) Oz k — k{e) Or k =k

gives S(A) a k-k-biring structure by 1.5.

2.3. IsomorphismS(A) © S(B) — S(A ® B) of k-k-birings. Let B be another cocom-
mutative k-coalgebra, and leR be ak-ring. Then we have

Ring,(S(A) © S(B), R) = Ring;(S(B), Ring,(S(A), R))

Mod (B, Modi (A, R)) = Modi(A ® B, R)

Ring,(S(A® B), R)
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and hence a natural isomorphisftd) © S(B) =~ S(A® B) of k-rings. Explicitly, [a]O[b]
corresponds tda ® b], where[a] denotes the image a under the natural inclusion
A — S(A) and likewise for[b]. We leave the task of showing this is a map of
k-k-birings to the reader.

2.4. It follows that the comultiplication and the counit induce maps
S(A) — S(A) © S(A),
S(A) — k{e)

that give S(A) the structure of a commutative comonoid Birg «.

2.5. Now supposéA is a bialgebra, that isA is equipped with maps
ARA— A,
k— A

of k-coalgebras making a monoid in the category dé-coalgebras. By the discussion
above, this makess(A) a monoid in the category of cocommutative comonoids in
BRk.x. It is in particular ak-plethory. (It could reasonably be called a cocommutative
bimonoid in BR¢ —its additional structure is the analogue of the structure added to
an algebra to make it a cocommutative bialgebra—but because not a symmetric
operation on all oBR «, this terminology could be confusing.)

2.6. Remark. Given ak-ring R, an action of the plethory§(A) on R is the same as
an action of the bialgebrA on R. We leave the precise formulation and proof of this
to the reader. It may be worth noting that akying admits anS(A)-action in a trivial
way. This is true by the previous remark or by using the natural s\@p — k(e) of
k-plethories. It is false for general plethories.

2.7. Examples.

(1) If Ais the group algebr&G of a group (or monoid)G, then S(A) is the free
polynomial algebra on the set underlyii® For anyg € G, the corresponding
element inS(A) is “ring-like” 4T (g) = g®1+1®g and4*(g) = g ® g. An
action of the plethoryS(A) on a ringR is the same as an action &f on R.

(2) Let g be a Lie algebra ovek, and letA be its universal enveloping algebra. Then
for all x € g, the corresponding elemente S(A) is “derivation-like”: AT (x) =
x®1+1®x andA4*(x) =x®e+e®ux. If gis the one-dimensional Lie algebra
spanned by an elemedt thenS(A) = k[d°N] := k[e, d, d od, ...], and S(A)-rings
are the same ak-rings equipped with a derivation.

2.8. Remark.Because of the identificatiofi(A) ®; S(B) — S(A® B), there is a natural
isomorphismS(A) ©r S(B) — S(B) O S(A) of k-k-birings given by the canonical
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interchange map on the tensor product. Explicitly, it excharigés [b] and [b] © [a],
wherea € A, b € B. There is no functorial mag © 7T — T © S for k-k-birings S and

T that agrees with the previous map whgand T come from bialgebras. For example,
take S = Z[d°N] and T = A, below.

2.9. Hopf algebras.An antipodes: A — A gives a mapS(A) — S(A) of k-k-birings,
making S(A) what could be called a cocommutative Hopf monoidBiR k.

2.10. Symmetric functions and-rings. Let A be the ring of symmetric functions in
countably many variables, i.e., writing, for the sub-graded-ring oZ[x1,..., x,]
(degx; = 1) of elements invariant under the obvious action of thth symmetric
group, we letA be the inverse limit of

c— Ay — Ay — .

in the category of graded rings. The map above sendso 0 and sends any other

x; to x;. Of course, 4 is the free polynomial algebra on the elementary symmetric
functions[15, 1.2], but there are many other free generating sets, and making this or
any other particular choice would leave us with the usual formulaic mess in the theory
of A-rings and Witt vectors.

The ring A naturally has the structure of a plethory overBecause all the structure
maps are already described at various points in the second edition of MacOb&hld
we give only the briefest descriptions here:

Coadditive structurd15, 1.5 ex. 25] For f € A, consider the function

A+(f):f(X1®1,1®X1,X2®1,1®xz,...)

in the variablesy; ® x;, (i, j >1). It is symmetric in both factors, and s is a ring
map A — A ®z A. The counite™: A — k sendsf to £(0,0,...).
Comultiplicative structurg15, 1.7 ex. 20] Similarly, consider the function

Ax(f)=f(...,xi®xj,...)

in the variablesy; ® x;. As before, it is symmetric in both factors, and 46 is a
map A — A ®z A. The counite* : A — k sendsf to f(1,0,0,...).

Monoid structure[15, 1.8]: For f, g € A, the operation known as plethysm defines
fog: Supposey has only non-negative coefficients, and wigtas a sum of monomials
with coefficient 1 in the variables;. Then f o g is the symmetric function obtained by
substituting these monomials into the argumentsxy, - -- of f. This gives a monoid
structure with identityr1 +x24- - - on the set of elements with non-negative coefficients,
and this extends to a uniqué&plethory structure on all ofA.



J. Borger, B. Wieland/Advances in Mathematics 194 (2005) 246—283 259

2.11. Remark.By the theorem of elementary symmetric functidas, 12.4], we have
A =12Z[l, l2,...],

where A1 = x1 +x2 4+ -+, A2 = x1x2 + x1x3 + x2x3 + ---, ... are the elementary
symmetric functions. AnyA-ring R therefore has unary operationsg, Ao, .... It is an
exercise in definitions to show that in this way,faring structure on a rin®R is the
same as a-ring structure (which, in Grothendieck’s original terminoloffy, is called

a speciall-ring structure). This was in fact one of the principal examples in Tall and
Wraith’s paper[19].

Let y,, denote thenth Adams operation:
Vo =] G
The elementsw1, wy, ... of A determined by the relations

Y=Y dwj/® forallneN (2.11.1)
d|n

also form a free generating set. This is easy to check using the following identity:

Z (=1)" It = l_[ (1—x;jt) =exp| — Z %lﬁnt” - l_[ (L— wyt").

n=0 i>1 n=>1 n>1

The w; are responsible for the Witt components, as we will see in the next section.

2.12. Remark. There is also a description of in terms of the representations of the
symmetric group$l5, 1.7]. Let R, denote the representation ring 8f, the symmetric
group onn letters. The maps;, x Sy, — Sp4m, Sp = Sp X Sp, and S, Sy, = Sy xS —
Smn induce maps between the, by restriction and induction, and these make up a
plethory structure orgD,, > o R, agreeing with that om. This is one natural way to
view A when studying its action on Grothendieck groups (see, [6]3.

We do not yet know if similar constructions in other areas of representation theory
also yield plethories.

2.13. p-typical symmetric functiond.et p be a prime number, and sét=,. Then
Z(F):=Zle, F,FoF,...]is asubring of4, and because is ring-like, it is actually a
subZ-plethory. It is also the free plethory on the bialgebra associated to the mhinoid
We will denote it¥,, and we will see later that it accounts for the ghost components
of the p-typical Witt vectors.
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Now let 4, be the subring of4 consisting of elements for which there exists an
i € N such thatp’ f € ¥,. Then 4, is a subZ-plethory of A, and is what we call
the plethory ofp-typical symmetric functions

For alln € N, let 6, = wy,». Then (2.11.1) becomes

Fo" =00 4.+ p"0, (2.13.1)
and thereforeg, 0y, ... lie in A,. Conversely, because we have
A =2Z[0g, 01, ...][w, |n is not a power ofp],

we seed, = Z[0o, 01, .. .].

2.14.Binomial plethory.Becausea is a Z-plethory, the ringZ of integers is a/-ring.
The ideal inA4 of elements that act as the constant function 0 is generated by the set
{y, —e|n=>1}. The quotient ring is still a plethory, and an action of it on a riRgs
the same as givin® the structure of ad-ring whose Adams operations are the identity.
This has been shown by Jesse Elliott (unpublished) to be the same as a bihomgl
structure[11, p. 9Jon R.

This plethory can also be interpreted as the set of functionss Z that can be
expressed as polynomials with rational coefficiefs

3. Examples of Witt rings

Let k be a ring. Recall that i is a k-plethory, thenWp(R) denotes theP-ring
Ring, (P, R). BecauseWp is the right adjoint of the forgetful functor frorR-rings to
rings, there is a natural mayp — Wp(Wp(R)), which in the case of the classical
plethories is sometimes called the Artin—Hasse map.

3.1. Bialgebras. Let P be the freek-plethory (2.2) on a cocommutativie-bialgebra
A. Then we haveWp(B) = Modi(A, B). If A is finitely generated as &module,
Wp(B) is just B®; A*, where A* denotes the dual bialgebra Madi, k). We leave it
to the reader to verify that, in this case, the mi&p(B) — Wp(Wp(B)) is nothing
but the comultiplication map on this bialgebra. For examplé) i the group algebra
of a finite groupG, then we haveWp(B) = B¢ and the map above is the map
B¢ — BY9*G = B¢ ®p BY induced by the multiplication o/®.

3.2. Symmetric functionsBecaused = Z[41,...], the setW,(B) is just [],.q B,

and it is easy to check that, as a group, we h&#g(B) = 1+ xB[x], where the
group operation on the right is multiplication of power series. It is also true that if
1+ xB[x] is given a A-ring structure as in1, 1.1], then the identification above

is an isomorphism of1-rings, i.e., W4(B) is the A-ring of “big” Witt vectors. The
proof of this is very straightforward but involves, of course, the somewhat unpleasant
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definition of theA-ring structure on % x B[[x]]. Because the whole point of this paper
is to move away from such things, we will leave the argument to the reader. The
generating sefwsi, wp, ...} of 2.11 allows us to view an element d¥,(B) as a
(“big”) Witt vector in the traditional sensg8, 17.1.15] Under this identification, the
map W4(B) — W, (W,(B)) agrees with the usual Artin—-Hasse mi@y 17.6]

If ¥ denotes the sub-pletho@[y, |n>1] of A, then Wy(B) is just[],.oB as a
ring, and under this identification, the map,(B) — Ww(B) is the ghost-component
map.

Some early references to the big Witt vectors are Cafdérand Witt (12] or
[22, pp. 157-163]

3.3. p-typical symmetric functionsBecauseA, = Z[0p,...], the set Wy, (B) =
Ringz (4,, B) is naturally bijective withBN. If we view BN as the set underlying the
ring of p-typical Witt vectors[21], [8, 17.1.15] then this bijection is an isomorphism
of rings. One can write down the correspondidg-action onBN, and we recover the
p-typical Artin—Hasse map as we did above. Also as abov#, jfdenotes the plethory
Z[u//;,N], then the natural mapV,,(B) — Wy, (B) is the p-typical ghost-component
map.

The Teichmiuiller lift can be constructed by considering the monoid algél#aon
the multiplicative monoid underlyin®. The ringZ B has no additivgp-torsion, and the
map F:[b] — [bP] = [b]? ([—] denoting the multiplicative maB — ZB) reduces to
the Frobenius map modulp. The ring Z[B] therefore (3.4) admits a uniqué,-ring
structure wherd- is the above map. The canonical ring map — B then induces by
adjointness a magB — Wy, (B). In the standard description, it ] — (b, 0,0, ...),
which is of course the Teichmdaller lift db.

The following lemma implies that & ,-ring is the same as what Joyal call$-aing.
(A comonadic version of this statement is stated quite clearly in Jaygdj we include
it only because we will use it later.)

3.4. Lemma.The R be a p-torsion-free ring. Given an action4f on R the element

F gives an endomorphism of R such thatx) = x” modpR. This is a bijection from
the set of actions o#1, on R to the set of lifts of the Frobenius endomorphism of
R/pR.

Proof. BecauseR is p-torsion-free, (2.13.1) implies that any action.¢f is determined
by the endomorphisnir, and so we need only show every Frobenius lift comes from
some action ofd,.

Given a Frobenius liftf: R — R, Cartier's Dieudonné-Dwork lemm§l3, VI

Section 4]states there is a ring maf — W,,(R) such that the composit®& —
WAP(R) — Wy (R) sendsr to (r, f(r), f(f(r)),...). This gives a mapl, © R —
R; to show it is an action we need only check it is associative. BecRuse-torsion-
free it suffices to check the induced map ¥, © R — R is an action. But the
Dieudonné—Dwork lemma implies this map sen@® © r to f°' (r), which is clearly
associative. [J
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4. Reconstruction and recognition

In preparation for the reconstruction theorem, we generalize the notions of biring and
plethory fromRing, to Ringp for non-trivial plethoriesP. This gives usP-P’-birings
and P-plethories, which reduce t&-k’-birings andk-plethories whenP = k{e) and
P =k'(e).

Let P be ak-plethory andP’ a k’-plethory, wherek and k' are arbitrary rings.

4.1. Functor — ©pr —:BRp_p x Ringpr — Ringp. Take S € BRp pr and R € Ringp:.
Then S ©p/ R is defined to be the coequalizer of the mapsPafings

SO POy R=SOr R
SQUOr—= (son)Or

SQUOr—> s (aor).

4.2. Lemma.Let S be a PP’-biring. Then the functorS ©p —: Ringp, — Ringp is
the left adjoint of the functoRingp (S, —).

We leave the proof to the reader.

4.3. Proposition. Let P — Q be a map of plethories. Then the restriction functor
Ring, — Ringp preserves limits and coequalizers and has a left adjimtductiort)

0 ©p —. If the mapP — Q is an isomorphism on scalgrst has a right adjoint
(“co-inductiorf) Ringp(Q, —) and preserves all colimits

Proof. BecauseQ is a Q-P-biring, 0 ©p — is left adjoint (by 4.2) toRing,(Q, —),
which is the forgetful functoRing, — Ringp. If P — Q is a map ofk-plethories,Q
is a P-Q-biring, soRingp(Q, —) is right adjoint toQ ©¢ —, the forgetful functor. It
follows that the forgetful functor preserves limits and, when the rings of scalars agree,
colimits. It remains to show it always preserves coequalizers.

Consider the commutative diagram of forgetful functors

Ringg —— Rinng

.

Ringp ——— Ring;,.

The upper functor preserves colimits, and the right-hand functor preserves coequalizers.
The lower functor reflects isomorphisms and preserves colimits. It then follows that the
left-hand functor preserves coequalizers.[]
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4.4. Remark. If kp — ko is not an isomorphisms™* will fail to descend. ThusQ
will not be akp-kp-biring, let alone aP-Q-biring.

4.5. A P-plethory is defined to be a plethor) equipped with a mapP — Q of
plethories which is an isomorphism on scalars. A morphi@m> Q' of P-plethories
is a morphism of plethories commuting with the maps frBm

4.6. Proposition. — ©p — makesBRp p into a monoidal category with unit object P.
Monoids in this category are the same as P-plethories. An action of such a monoid
Q on a P-ring is the same as an action of Q on the underlying k-ring such that the
action of Q restricted to P is the given ane

Proof. The first statement requires no proof. Given a monQidthe structure maps
give mapQ Oy Q — Q Op QO — Q and P — Q making it ak-plethory. Conversely,
a mapP — Q of k-plethories make®) a P-P-biring and the associativity condition
Q0O Q0OrQ=0Q0kQ— Q implies thatQ Ox P Or Q = Q Or Q — Q commutes,
so composition descends © ©p Q — Q.

Similarly, an action ofQ on the underlying-ring of aP-ring A is a mapQ ©y A —
A, and it descends to B-actionQ ©p A — A becauseQ O PO A= QO A — A
commutes. [

4.7.Now let C be a category that has all limits and colimits, andlUetC — Ringp be

a functor that has a left adjoift. We also assum#& reflects isomorphisms, that is, a
morphismf is an isomorphism if and only & () is an isomorphism. Sep = U F(P).
Let U’ be the composite ob) with the forgetful functor fromRing, to the category
of sets.

4.8. k-Plethory structure on Q when U has a right adjoirBupposeU has a right
adjoint W. The functorUW is represented byQ: UW(A) = Ringp(P,UW(A)) =
Ringp(UF (P), A), and this givexQ the structure of &-P-biring (1.9). The composite
UW of adjoints is a comonad, and so its adjo@top, — is a monad. By 4.6Q is a
k-plethory with a mapP — Q.

Given an objectA of C, the adjunction gives an action é¢f F(—) = Q ® — on
U(A), and hence we have a functGr— Ring, between categories ovéling.

4.9. Theorem.If U has a right adjoint W then the functorC — Ring,, is an equiva-
lence of categories ovelRingp.

Proof. Beck’s theoren|14]. O

4.10.Let k' be theP-ring U F(k), and letP’ be thek’-plethory k' ®; P. BecauseF (k)

is the initial object,U factors as a functot/’: C — Ringp, followed by the forgetful
functor V: Ringp: — Ringp. The functorU’ has a left adjointF” given by descent: if
A'is a P’-ring, then FV (A) has two maps fronF (k') = FU F(k), one from applying
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FV to the initial mapk’ — A and the other given by the composite
FUF (k) — F(k) —> FV(A),

where the first map is the adjunction and the second is the initial map.Flet)
denote the coequalizer af (k') = FV (A).

4.11. Theorem.If P — Q is a map of plethories and U is the forgetful functor
Ringy, — Ringp, then U’ of 4.10 has a right adjoint. ConverselysupposeU’: C —
Ringp has a right adjoint and let Q be thek’-plethory U’ F’(P’) of 4.8. Then the
functor C — Ring,, is an equivalence of categories ovRingp.

Proof. Apply 49 toU’. O

4.12. Remark. In practice, it is quite easy to check the existencd~aéind W’ using
Freyd’'s theorem from category theory.

5. P-ideals
Let P be ak-plethory, and letP, denote the kernel of™: P — k.

5.1. An ideal | in a P-ring R is called a left) P-ideal if there exists an action oP

on R/I such that the majR — R/I of rings is a map ofP-rings. If such an action
exists, it is unique, and so beingRaideal is a property of, rather than a structure on,
a subset oR.

5.2. Proposition. Let | be an ideal in a P-ring R. Then the following are equivalent

(2) I'is a P-ideal

(2) 1 is the kernel of a morphism of P-rings

(3) Prol CI;

(4) | 'is generated by a set X such th&f o X C I.

The proof is in 5.6.
Given any subseK of P, it is therefore reasonable to call the ideal generated by
P4 o X the P-ideal generated by X

5.3. Elements of P ® P give binary operations on ani-ring R by (o ® p)(r,s) =
a(r)B(s) and extending linearly.

5.4. Lemma. Let R be a P-ring !l an ideal in R and X a subset of R. Assume that
for all x € X and f € P+, we havef(x) € I. Then for allt ¢ P ® Py and all
(r,i) € R x I, we havet(r,i) € I.
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Proof. Sincer € P ® P, it may be expressed as= Zt} ®t}’ with t}’ € P4, so that
t}/ preserved. Then for(r,i) e R x I, t(r,i) = Zt}(r)t}’(i) el. O

Typical applications will useX = I, a P-ideal.

5.5. Lemma. Let S be a ¥-biring. ThenA™*(S,) is contained inS; ® S+ S ® S,
and 4*(S,) is contained inS; ® Sy.

Proof. Sis a ring object in the opposite dRing;; the ring identity 0+ 0 = 0
translates into the identityst @ ¢*) o AT = ¢, which is clearly equivalent to the

first statement. The second statement is similarly just a coalgebraic translation of a
ring identity. LetW denote the ring object correspondingSdn the opposite category.
Then the commutativity of the following two diagrams is equivalent:

X Vil
W <=— WxW S — S®S
T T idx0wu0xid i et \L idest xeT®id
0 <— WuWw. k —— SxS§

But the commutativity of the first is just a restatement of the ring identityx 0=
x -0=0. We therefore have

AX(Sy) € ker<S®S—> S x S) -5, ®8. O

5.6. Proof of 5.2.(1) = (2) and (3) = (4) are clear.

(2) = (3): P4 preserves the sdD} in k and, thus, in anyP-ring; it therefore must
preserve its preimage under a morphismPeffings.

(3) = (1): If | is preserved byP,, we must put aP-ring structure onR/I so that
R — R/I is a morphism ofP-rings. The action must be(r + 1) = p(r) + I, it is
necessary only to check that this is well defined. The kernel pfgd™: P P — P
is P ® Py, and so by the counit condition, we have p — p® 1 e P ® P, for all
p e P. Foranyi € I, we havep(r +i) — p(r) = (4T p — p ® 1)(r,i). By 5.4, the
right-hand side of this equality is ih and so the action is well defined.

(4) = (3): Consider the sel of elements ofl that are sent intd by all elements of
P..If feP, thend*fe P,®P+P®P,. Thus forj, k € J, Lemma 5.4 implies
f(j+k)el and hencej + k € J. Similarly, 4* f € P, ® P C P ® Py, and so for
re R andj € J, we havef(rj) € I and hence-j € J. ThereforeJ is an ideal, and
if a generating set fot is sent by P, into |, we havel = J. So all of | is preserved
by P.. O

5.7. Proposition. Let | and J be P-ideals in a P-ring A. Then 1J is a P-ideal
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Proof. It is sufficient to checkf (xy) € IJ for all f € Py, x € I, andy € J because
suchxy form a generating set. We can writs f = Y° Mo @ with f1Y, s e p,,
and so we havef(xy) =Y. M) Py ers. O

6. Two-sided ideals
Let P be ak-plethory, and letP’ be ak’-plethory.

6.1. An ideal J in a k-k’-biring Sis called ak-k’-ideal if the quotientk-ring S/J admits
the structure of &-k’-biring. This is clearly equivalent t&/J being, in the opposite
of Ring,, a subk’-ring object ofS, and so ifS/J admits such a structure, it is unique.
This is also equivalent to the existence of a generatingXsef J such that, in the
notation of 1.1, we have

LASX)SS®I+I®S,
2. 45(X) S S®J+JQ®S, and
3. fg(e)(X) =0 for all c € k.

6.2. A k-k’-ideal J in a P-P’-biring Sis called aP-P’-ideal if there exists &-P’-biring
structure on the quotierk-k’-biring S/J such thatS — S/J is a map ofP- P’-birings.
If such an action exists, it is unique, and so as was the cas®-fdeals, being a
P-P’-ideal is a property, rather than a structure.

6.3. Proposition. Let J be a kk’-ideal in a kk’-biring S. Then the following are
equivalent

1. Jis a PP’-ideal,

2. J is the kernel of a map of-PP’-birings;

3. PLoJoP CU;

4. J is generated by a set X such thAt o X o P’ C J.

The asymmetry in (3) is due to the traditional definition of ideal. If we took a more
categorical approach and considered, instead of kernels of RapsS of k-rings, the
fiber productsk xgs k, the P, in (3) would become &.

Proof. As in 5.2, the only implication that requires proof (4) = (1).

So, assume (4). By 5.3,is aP-ideal; and by assumptiod,is ak-k’-ideal. Therefore
S/J is aP-k’-biring. For alls € S,j € J,f € P/, we have

(s+j)of=sof+jof=sofmodJ,

and so the rightP’-action descends t6/J. O
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6.4.1f Jis aP-P-ideal in P itself, then this proposition implie®/J is a P-plethory in
the sense that the-P-biring structure onP/J extends to a unique-plethory structure
onP/J.

6.5. Proposition.The categonBRp_p: of P-P’-birings has all colimitsand the forgetful
functor BRp pr — Ringp preserves them

Proof. Given a diagramC of P-P’-birings, its colimitS in the category ofP-rings
has the property that for ang-ring R, the setRingp(S, R) is the limit of the sets
Ringp(T,, R), wherec ranges ovelC. Because eacRingp (7., R) is a P’-ring and the
maps areP’-equivariant,Ring (S, R) is a P’-ring. Thus, by a remark in 1.9 has
a uniqueP-P’-biring structure making the magg — S maps ofP-P’-birings, which
was to be proved. [J

6.6. Free plethory on a pointed biringThe free P-plethory Q on a P-P-biring S can
be constructed as in 2.1. It comes equipped with a ap- Q of k-plethories.

Now let f: P — S be a map ofP-P-birings. (This is equivalent to specifying an
elementsg € S such thatp o so = spo p for all p € P.) Then the free plethory on
the pointed biringS is coequalizer (6.5) of the tw®-Q-biring mapsQ© P © Q = Q
induced by sending ® « ® ¢, on the one hand, ta € P = S°° and, on the other,
to f(x) € SOL. By 6.4, Q is a k-plethory. It is the initial object amon@-plethories
P’ equipped with a magp — P’ such that the composit® — S — P’ agrees with
the structure mag® — P’. An action of this plethory on &-ring R is the same as an
action of P on R together with a magg ©® R — R such thatf(p) © r +— p(r) for all
p € P, reR.

At this point, it is quite easy to give an explicit construction/f that does not rely
on symmetric functions. Le§ = Z[e, 01] be theZ(e)-pointed Z-Z-biring determined

by

p—1
1 . .
A+:01|—>91®1+1®91—Z—(f)e’@epl, (6.6.1)
— p
i=1

A% 01 — ep®91+01®ep+p91®91. (6.6.2)

Then Cartier's Dieudonné—Dwork lemma impliek, is the freeZ-plethory onS Of
course, this is just a plethystic description of Joyal's approd€l} to the p-typical
Witt vectors.

6.7. The following asymmetric variant of this construction will be used in Section
7. Let Py be ak-plethory, letP be a Py-plethory, letS be a Pp-P-biring, and let
g: P — S be a map ofPy-P-birings. LetQ denote the freePy-plethory onS viewed
as a pointedPy- Py-biring. Then we have two maps dfy-Po-birings S ©p, P = Q
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given bys O o s © g(@) € S92 ands © o — s o € S®L. These then induce two
maps ofQ-Q-birings Q ©p, S ©p, P ©p, @ = Q. The coequalizel of these maps is
a Po-plethory (6.4), but the two map® — Q become equal i, and soT is in fact
a P-plethory. An action ofT on a ringR is the same as an action Bfon R together
with a mapS ®p R — R such thatg(x) ©r +— aor.

7. Amplifications over curves

Let © be a Dedekind domain, and let be an ideal; lekk denote the residue ring
O/m, and letK denote the subring of the field of fractions @f consisting of elements
that are integral at all maximal ideals not dividing. The m-torsion submodule of
an O-module M is the set ofm € M for which there exists am € N such that
m"m = 0. We say anD-module ism-torsion-free if itsm-torsion submodule is trivial,
or equivalently, if it is flat locally at each maximal ideal dividing.

Now let P be anO-plethory that ism-torsion-free, letQ be ak-plethory, and let
f:P — Q be a surjective map of plethories agreeing with the canonical map on
scalars. AP-deformation of a Q-rinds anm-torsion-freeP-ring R such that the action
of P on k® R factors through an action @ on £ ® R. (Note that becaus® — Q is
surjective, it can factor in at most one way.) A morphismPefleformations ofQ-rings
is by definition a morphism of the underlyirig-rings.

The purpose of this section is then to constructCplethory P’, the amplification
of P along Q such thatm-torsion-free P’-rings are the same aB-deformations of
Q-rings. It is constructed simply by adjoining =1 ® I to P, wherel is the kernel of
the mapP — Q, and so it is analogous to an affine blow-up of rings. Note however
that there are some minor subtleties involved in adjoining these elements because a
plethory involves co-operations, not just operations, and because we need to know how
to compose elements & with elements ofm~! ® I, but P may not even act oK,
let alone preserven.

7.1. Theorem.The P-plethoryP’ of 7.6 is m-torsion-free and the forgetful functor from
the full category ofim-torsion-free P’-rings to Ring identifies it with the category of
P-ring deformations of Qings. Furthermore P’ has the following universal property
Let P” be a P-plethory whose underlying P-ring is a P-deformation of a Q-ring. Then
there is a unique ma@’ — P” of P-rings commuting with the maps from &nd this
map is a map of P-plethories

7.2. Corollary. Let P” be a P-plethory with the property that the forgetful functor from
the full category ofm-torsion-free P”-rings to Ringp identifies it with the category
of P-ring deformations of Q-rings. Then there is a unique niEp— P’ of P-rings
this map is a map of P-plethorigand it identifiesP’ with the largestm-torsion-free
P”-ring quotient of P”.

We prove these at the end of this section. Note that either the theorem or the
construction of 7.6 implies amplification is functorial Prand Q.
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7.3. Remark. As always, either universal property determin&suniquely up to unique
isomorphism. The final statement of the corollary determines it without any mention of
universal properties: it is the unique-torsion-freeP-plethory such that the forgetful
functor identifiesm-torsion-free P’-rings with P-deformations ofQ-rings.

One could also describe the category of Altrings as the category obtained from
the category ofP-deformations ofQ-rings (i.e., m-torsion-free P’-rings) by adjoining
certain colimits. This would give another satisfactory approach to the functqr of
typical Witt vectors circumventing any discussion of plethories.

7.4. Lemma.Let T be anO-plethory. Then the T-ideal in T generated by thetorsion
ideal is a T-T-ideal

Proof. Let| denote the ideal ofit-torsion inT, and letJ denote theT-ideal it generates.
First we showl is an O-O-ideal. Becausé is m-torsion, the ideal’ I + 1 ® T is
contained in than-torsion ideal of7 ® T. But this containment is actually an equality:
becauseT /I is m-torsion-free and becaus® is a Dedekind domainT/I ® T/I

is m-torsion-free. It therefore follows thati*(7) and 4*(I) are both contained in
TQI+I1I®T. And last, f(c)(I) is zero because it is torsion b@ is torsion-free.
By 6.1, the ideall is an O-O-ideal.

Now we showlJ is a T-T-ideal. It is aT-ideal by definition, and so we need only
showJoT C J, and in fact only/ o T C J. So takei € I ando € T. Then there is
somen € N such thatm”; = 0, and for everyx € m”, we havex(ioa) = (xi)oax = 0.

O

7.5. Maximal m-torsion-free quotient of ar®-plethory. Let Top be anO-plethory, letJ
denote thelp-ideal generated by th@-torsion. By 7.4 and 6.4, the quotieffi{ = 7/J
is an O-plethory. LetT> be the same construction applied g, and so on. Then the
colimit of the sequence

To—> Tp —> -

in the category offp-Tp-birings (6.5) is clearly the largesti-torsion-freeTp-ring quo-
tient of Tp. It is an O-plethory because it is a quotiefiy-7o-biring of Tp.

Note thatm-torsion-freeTp-rings are the same as-torsion-free7’-rings.

7.6. Amplification P’ of P along Q Let | denote the kernel of the map — Q, and
let S denote the sul®@-ring of K ® P generated byn~1® I. (Here, all tensor products
are over®, and as usuam~! denotes the)-dual of m viewed as a submodule &.)
Note that we have ® P C S and also thatlk ® P is a K {e)-P-biring, but it need not
be aK-plethory.
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The K-O-biring structure onkK ® P induces anD-O-biring structure ors as follows:
Let 4 denote eitheid™ or A%, and letAx denote ik ® A. Then we have

Ao ¢ mte A

N

mlePeI+1®P).

Identifying K ® P ® P with (K ® P) ® (K ® P), we have
Agmrehc@leP)em D+ mIeN®(1LeP)CS®S.

Becausedg is an O-ring map, it follows that4(S) € S ® S. Similarly, if ¢ denotes
either the additive or multiplicative counit angr = idg ® ¢, then

5K(m_1 QI = mle e(I) C mlogm=o0,

and as above, we hawgS) € O. The properties necessary for this data to give a
O-0O-biring structure onS follow from the K-O-biring properties onk ® P.

Becausel is preserved by the right action d¥, so is S, and thereforeS has a
O(e)-P-biring structure. Lefl be the construction of 6.7 applied to tii&plethory P,
the O(e)-P-biring S and the inclusion mag — S.

Finally, let P’ denote the maximahi-torsion-free quotient ofl (7.5). It is a P-
plethory becausé is.

7.7. Lemma. Let R be anm-torsion-free P-ring. Then the action of P on R factors
through at most one action af’, and one exists if and only if R is a P-deformation
of a Q-ring

Proof. Suppose the action d® on R prolongs to two action®; and oy of P’. For
any o« € P’ andr € R, we want to showx o1 r = o 02 r. BecauseT surjects ontoP’,
it is enough to show this fot in T and, becaus& generated, even inS. But Sis a
subset ofK ® P; so take some: € N such thatm”« C P. Then

x(oo1r) = (x)orr = (xa) ogr = x(topr)
for all x € m". But becauseR is m-torsion-free, we have oy r = o r, and so there
is at most one compatible action & on R.

The action ofP on R/mR factors throughQ if and only if 7 o R € mR. This is
equivalent tom=1 ® I) o R € R under the map

(K®QP)OR=K®(POR) > KQ®R,

which is in turn equivalent to§ o R C R. BecauseR is m-torsion-free and because
K®S = K ® P, this is then equivalent to the existence of some mfa§ ©p R — R
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of O-rings such thap o r = por for all p € P,r € R. By 6.7, this is equivalent to an
action of T on R that is compatible with the given action & and this is equivalent
to such an action o’ on R O

7.8. Proof of 7.1. P’ is m-torsion-free by construction.

The forgetful functor is clearly faithful, and Lemma 7.7 implies its image is as stated.
To see it is full, letR and R’ be m-torsion-free P’-rings and letf: R — R’ be a map
of P-rings. We need to checi(xor) =oo f(r) for all x € P’ andr € R. As in the
proof of 7.7, it is enough to show this far in S where the equality follows because
R’ is m-torsion-free. This proves the functor is fully faithful.

Let P” be as in the universal property. By the previous paragraph, the actiéh of
on P” extends uniquely to an action @f’; and becauseé®’ is the freeP’-ring on one
element, there is a unique map &f-rings P’ — P’ sendinge to e. Again by the
previous paragraph, we see there is a unique ®ap> P” of P-rings sendinge to g,
that is, commuting with the maps frof.

To show this is a map oP-plethories, it is enough to show there exists some map
P’ — P” of P-plethories. Becaus®” is m-torsion-free, such a map is the same as a
mapT — P” of P-plethories, and this is the same as a Sap- P” of O(e)-P-birings
respecting the maps frof. BecauseP” is m-torsion-free, there is at most one such
map, and there is exactly one if the m&@— P” sendsl to mP”. But this is just
another way of saying th®-ring underlying P” is a P-deformation of aQ-ring, and
that fact we are given. [

7.9. Proof of 7.2.ReplacingP” with its maximalm-torsion-free quotient (7.5), we can
assumeP” is m-torsion-free. ThenP” and P’ are both initial objects in the category
of P-deformations ofQ-rings and so are uniquely isomorphic. The universal property
of the theorem applied t@” then implies this isomorphism is a map G¥plethories.

O

7.10.SupposeK admits aP-action. TherK is trivially a P-deformation of aQ-ring and,
by 7.1, has a unique compatibl®’-action. By 1.13, there is a canonicElplethory
structure onkK ® P’.

Propostion. If K admits a P-actionthe mapK ® P — K ® P’ is an isomorphism
of K-plethories. Moreoverunder this identification P’ is the O-subring of K ® P
generated by the-words in the elements ofi "t ® I.

Proof. To show the first statement, it is enough to show the map induces an equivalence
betweenRinggsp and Ringggp. But @ K ® P-ring structure on &-ring R is the
same (by 1.13) as an action & on R, and becaus® is trivially a P-deformation
of a Q-ring, this is the same as &’-action, which (by 1.13 again) is the same as a
K ® P’-ring structure orR.
BecauseP’ is m-torsion-free, it is naturally aW-subring of K ® P’ = K ® P. Since
P’ is the surjective image of the free plethory on the birgt is the smallestD-ring
in K ® P containingm—1 ® I (and henceS) and closed under composition. [J
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8. The cotangent algebra

By the structure of amlgebra over kon anZ-algebraA, we mean simply a morphism
k — A of Z-algebras. The image need not be central. These form a category in the
obvious way.

For any k-k’-biring S, write Cs for the k-module S, /52 = ker(e§)/ ker(e{)?. It
is called the cotangent space 8f The purpose of this section is to show that the
cotangent space is naturally kak’-bimodule and, especially, the cotangent space of
a k-plethory is naturally an algebra ovée We do this by showing that i’ is a
k’-k”-biring, then Csps = Cs ® Csr. Thus, whenk = k' = k", the cotangent space
is a monoidal functor, so it sends plethories (monoids in the categokykedirings)
to algebras ovek (monoids in the category dék-bimodules).

First we show all elements of; are additive up to second order:

8.1. Lemma. Let J denote the kernel of the map ® ¢™: S ® S — k. Then for all
s €Sy, we haved™(s) = s @ 1+ 1® s modJ2.

Proof. The cotangent space functor takes coproductiimg, to coproducts ofk-
modules and (hence) takes cogroup objects to cogroup objects. In particular, we have
an identification/ /J2 = Cs@®Cy, and under this identification, the m&y — Cs®Cs

of cotangent spaces induced Y makesCs a cogroup in the category d&¢modules.

But the only cogroup structure onkamodule is the diagonal map. O

8.2. Proposition. Consider the right action ok’, as a monoidon S given by setting
s - ¢ to be the image of © ce under the identificationS O k'(e) = S. (Explicitly,
s-c= Zﬁ(c)(si[l])si[zl.) Then this action preserve$; and descends t@'s, and the
resulting action makes the k-modulg a k-k’-bimodule

Proof. The action preserveS, sincee™(s) = s -0. Because it acts by ring endomor-
phisms, it also preserve&ﬁ, and thus it descends 5. By 8.1, k" acts not just as a
monoid, but as a ring. It commutes with tlkeaction because for any € k, we have
(bs) © (ce) = (b O (ce))(s © (ce)) =b(s ® (ce)) in SOk (e). O

8.3. Proposition. The mapk — Ci) given byc — ce is an isomorphism of k-k-
bimodules. If S is a-k’-biring and $’ a k’-k”-biring, then the mapCs ®; Cy —
Cso, s given bys®s’ > s ©s’ is well defined and an isomorphism okkbimodules

Proof. The first statement follows immediately from the definition (1.2%¢f) = k[e].

Now we will show the second map is well-defined. Note thats © s’) = s(s'(0)),
where a(c) denotesf(c)(«). Thus ifs € Sy ands’ € §',, thens ©s' € (§© §’)4, and
so we have a well-defined mapy. x S, — Csogs. This map is clearly additive in the
first variable and is additive in the second by 8.1. Thus to check that it descends to
Cs x Cy, we need only show ©s’ € (S© §)2 for s € $2 ands O 5" € (SO §)2
for s" € (S’)i- The first is clear, for ring operations come out of the left side of the
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composition product. For the second,may be a sum of products, but up to second
order, sums also come out of the right side (by 8.1), and so we may assumg s,

s; € §\. Thens © sysy, = 4%s(sq, 55), but 45 € S, ® S4 by 5.5. Elements ok’ may

be moved between the factors by the identifications

S’@(k/(e) @S”) =508 = (S’@k/(e)) oS8

and so the map descends @@ ®; Cy. Finally, it is a map ofk-k”-bimodules by the
associativity of the composition product.

Since the mapCs @ Cs — Cse,, 5 is all we need to make the cotangent space of
a plethory into an algebra, we leave the many details of the isomorphism to the reader.
The key observation is that

sOs =50 (e+eT(s))ole—eT(s))os =so(e+eT(s)) O —e(s)),

so thatS Oy S’ is generated by elements of the fosros” with s” € S’,. This suggests

the map of ringsf: SO S — k®Cs®Cg given by f(s ©s') =T (s Os)+ (so(e+

et () —eT (s ©s5)®(s' —e™(s")), which descends to the invers§gos — Cs ® Cy.
O

8.4.Cp is an algebra over kLet P be ak-plethory. The compositio®® © P — P and
unit k(e) — P induceCp ®; Cp — Cp andk = Cyy — Cp making Cp an algebra
over k. Note thate is the unit for composition and thus the unit of this algebra.

8.5.1/1% is a Cp-module.Let | be aP-ideal in aP-ring R. Then by 5.7,Cp acts
as a monoid on//I2. But 8.1 implies this action iZ-linear, and we always have
(¢4 p)ox =oox+ fox; so, this action is actually & p-module structure o /1.
The two k-module structures oi/I2, one by way ofk — Cp and the othek — R,
agree.

9. Twisted bialgebras and their coactions

First we recall some basic notions introduced by Sweefllét, as modified by
Takeuchi[18, 4.1]

9.1.1f A andB are two algebras ovek, then A ®; B, where thek-module structure on
each factor is given by multiplication on the left, has two remairkragtions: one by
right multiplication onA and one by right multiplication oB. Let A®B, the Sweedler
product denote the subgroup where these two actions coincide. It is an algebr& over
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with multiplication

<Zai ®bi) Za} ®b} = Zaia} ®bib}.
J i,j

i
The Sweedler product is symmetric in the sense that the symmetrizing map
ARy B—> B®:A, a®b—>b®a

sendsA®B isomorphically toB®A. Note that® is not naturally associative in the
generality above (but it is if, say, the algebras kiftat [17, Section 2).

If M and N are left A-modules, thenM ®; N is a left A@A-module by (}"; a; ®
biY(m@n) =), aim Q b;n.

9.2. We sayA is atwisted k-bialgebraif it is equipped with a mapd: A - A®A of
algebras ovek and a mape: A — k of k-modules satisfying the following properties

1. the composited =N A®A — A ® A is coassociative with couni, and
2. ¢(1) =1 and for alla,b € A, we haves(ab) = e(ai(e(b))), where: denotes the
structure mapk — A.

Thus, the structure of a twistekibialgebra onA is the same as the structure of a
k-bialgebroid onA where the structure map®z k — A factors through multiplication
k®zk — k. (Several equivalent formulations of the notion of bialgebroid are discussed
in Brzezinski—Militaru [3].) Assuming flatness, it is also the same as what Sweedler
[17] called ax-bialgebra structure.

The category of lefA-modules then has a monoidal structure that is compatible with
®k, and this is precisely the data needed to make thigks 6.1] [3, 3.1). If 4 is
cocommutative in the obvious sense, this monoidal category is symmetric.

9.3. Let C be an algebra ovek. A coaction of A on C is a mapa:C — A®C of
algebras commuting with the maps frdimsuch that the composite

CLA®RC > A®C

is a coaction ofA, viewed as &-coalgebra, orC. (So,C is a left A-comodule algebra
in the terminology of[5]). Given a leftA-moduleM, a left C-moduleN, and a coaction
of A on C, the tensor producM ®; N is naturally a leftC-module by way ofa. In
this way, the category of lefA-modules acts on the category of l&ftmodules.

The map4: A — A®A is a coaction, theegular coaction.

9.4. Generalized semi-direct produd®x4C. SupposeA coacts onC and also acts
on ak-ring R in the sense that the multiplication map® R — R is a map of
A-modules. ThenR ®; C is an R-module and (by 9.3) &-module, and this induces
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a multiplication
(RCO)®(R®C)=R®(CR®(R®C) —RRRX®C)—RXRC

on R ® C with unit 1® 1. The mapk - R® C is simplyx —» x®1=1Q x.

We denote this algebra b x4C. WhenC is A with the regular coaction ané is
untwisted (i.e., the image d€ is in the center ofd), this agrees with the semi-direct,
or “smash”, product in the usual sengd.

It is immediate that the mag — Rx4C given byr — r® 1 is a map of algebras
overk, and the counit property implies the m&p— Rx4C, c+— 1®c is also such
a map. Therefore a® x 4C-module structure on &-moduleM is the same as actions
of R and C on M which are intertwined as follows:

c(r(c'm)) = Z (C,-(l)r)(CEZ)C/m),

where 4(c) =), ci(l) ® cfz) €eAR®C.

10. The additive bialgebra

The purpose of this section is to show that the set of additive elementskin a
plethory is naturally a cocommutative twist&ebialgebra, at least under certain flathess
hypotheses.

10.1. Let P be ak-plethory. An elementf € P is additiveif A7 (f) = f®1+1Q® f,

which is equivalent to requiring that(x + y) = f(x) + f(y) for all elementsy, y in

all P-rings. (In fact, takingt =e® 1, y=1Q®e in P ® P suffices.) Because we have
eT(f) = f(0) = 0, every additive element is i®,. The setA, or Ap, of additive
elements is clearly closed under addition and composition, and composition by additive
elements distributes over addition; thAss a generally non-commutative algebra with
unit 14 = e. Furthermore, the mapk — A, c +— ce is a map of algebras; so in this
way, A is an algebra ovek.

10.2. Proposition.The image ofA®A in P ® P is the set of k-interlinear elements
where f € P ® P is said to be k-interlinear iff(r, s) is additive in each argument
r,s € R and we havef(cr,s) = f(r,cs) for all ¢ € k.

Here we are using the notation of 5.3. Note thak-mterlinear element is not
required to bek-linear in each argument.

Proof. First we show that the image of ® P is the set of elements that are ad-
ditive on the left. Iff is in the image ofA ® P, it is immediate thatf is additive
on the left. Now supposé is additive on the left. BecausA is the kernel of the
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k-module map

PLPeP, fodAT(f)-fR®1-1® f (10.2.1)

the image ofA® P in P ® P is the kernel of the map ® 1:P® P - P® P Q P,
so it is enough to showi is in the kernel ofp ® 1. Write f =), o; ® ;. Then we
have

Z AT () @ B; = Z 2%e®1+1R®e)® f;

i i

=Y (@ ®h)oe®1l®l+1®e®1l1R1lxe)

1
= f(e®1®14+1®e®1,101Qe)
= f(e®l®111l®e)+ f(1®e®1,101®e¢)

=Y %@ ®1® fi(e) + L@ %(e) ® fi(e)

=Y @ ®1+1®%)® fi.

1

But (¢ ® 1)(f) is the difference between the first and last sums, and isoin the
kernel.

Essentially the same argument shows the imagel @ A in A ® P is the set of
elements whose image iR ® P is both left additive and right additive.

It is clear that any element in the image af®A is interlinear. Now letf be a
k-interlinear element ofA ® A. Then f(ce ® 1,1 ®e) = f(e ® 1,1 ® ce). Writing
f=>,;%®p; we have

Y (@0 (ce) ® f; =% & (B; o (ce)),

that is, f transforms the same way under the two actionk afin A by right multipli-
cation. O

10.3. Proposition. 4*(A) is contained in the image od®A in P ® P. If the maps
A®? 5 P®2 gand A®3 — P®3 are injective the algebra A is a cocommutative twisted
k-bialgebra(9.2), wheree is ¢* and 4 is 4%, viewed as a mapl — A®A C A® A.

Proof. For any elementf € A and anyP-ring R, the mapR x R — R given

by (r,s) — f(rs) is clearly k-interlinear. Because this map is just the application
of AX(f), we seed™(f) is k-interlinear and therefore lies in the image af»A,

by 10.2.
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Now we show4 is a map of algebras ovée Takea, b € A. Becausea is additive
and using 1.12, we have

A @ob)=aod*(b) =) (" obM)® (@@ o b?),
ij

but this last term is the product iIA®A of 4*(a) and 4% (). It is clear that4 is a
map overk.

The cocommutativity ofd follows from that of 4.

It remains to check properties (1)-(2) of 9.2. Because we have A ® A C
P ® P ® P, the coassociativity ol can be tested ilP ® P ® P, where it follows
from the associativity of the comultiplicatiod™ on P. The mape is a counit for A
simply because* is for 4.

It is clear thats(1) = 1. By 1.12, we also hava ¢lenoting the structure map— A)

e¥(ao1(e* (b)) =aoe*(ee* (b)) =ao ((ee*(h))(1) =aoe”*(b) =e*(aob),
for all a,b € A. O

10.4. Remark. If A and P are flat overk, then the injectivity hypotheses of the
proposition hold. In particular, they do fis a Dedekind domain an@ is torsion-free.
They also hold if the inclusiom — P is split, for example ifP = S(A).

In fact, we do not know any examples of plethories where the assumptions of the
previous proposition are not satisfied, but if they exist, it seems clear that the correct
replacement oA would be the collection of all multilinear elements in all tensor powers
of P assembled together in some sort of operadic coalgebra construction.

11. The coaction ofAp on Cp

BecauseA = Ap is contained inP,, we have a mapd — Cp, which is clearly a
map of algebras ovek.

11.1. Proposition.There is a unique map such that the diagram

AX
Py P ® Py
.
CP —————— > P+®CP

(using 5.5) commutesand the image of is contained in the image AA®Cp.
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If the mapsA® ® Cp — PE' @ Cp are injective fori = 1,2, thenv, viewed as a
mapCp — A®Cp, is a coaction of the twisted k-bialgebra A @y, and the natural
map A — Cp is A-coequivariantwhere A has the regular coaction

The injectivity hypotheses hold under the flatness and splitting hypotheses of 10.4.

Proof. The first statement is immediate becaute: P — P ® P is a ring map.
Let ¢ be as in (10.2.1). To show the imageois contained in the image A ®Cp,
it is enough to show the composite map along the bottom row of the diagram

Vike 1
Py — P, ®P — P, ®PL QP

T %

v @@1
CP —_— P+®CP —_— P+®P+®CP

is zero, and hence it is enough to show the composite of the maps along the top and
the right is zero. The method is the same as that of 10.2.

For any f € P,, write 4*(f) =Y, f™ ® f/?. Then

Yt e =3 Meel+100 e @) = f(e®@l+1oe) ®e).

On the other hand, by 8.1 we can writt"(f) = f ® 1+ 1® f modJ2, where
J=PQ® P, + Py ® P. Therefore, we have

fle®l®e+l®e®e) = f(e®1®e)+ f(1®e®e)modP ® P ® P2

=Y (Heooi+ie e e 2

and hence

(DU () =Y U (- Heoei+ie e e 2

1

= 0modP ® P ® P2,

which was to be proved.

As in 10.2, we show( f) is contained in the image AA®Cp by applyingf to the
equationce ® e = e ® ce, for anyc € k.

Now we showv is a map of algebras ovéde Supposef, g € Cp, and writev(f) =

1 2 1 2 . 1 1 2 2
Zifi[]@)fi[] and v(g) =ng5.]®g5.] with fi[],gg.] €A andfl.[],gg] e Cp.
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Then
V(fog) =f Z 85-1] ®g5-2] by 1.12

= Zf(g ® g'?)

=Y (Mogdhe P o
iJ

[1] [2] [1] [2]
(Zoes)e (Teod
J

i

v(f)v(g).

And v is a map ovelk becaused™ (ce) = c(e ® e).

All that remains is to show that is a counit and that is coassociative. The first
follows immediately from the counit property ef, and because of our assumptions,
coassociativity can be tested h® Cp ® Cp, where it follows from the fact that
is coassociative ofR. O

11.2. Example.If B is a cocommutativek-bialgebra andP = S(B), thenCp = B.
The image of inclusiolCp = B < S(B) is contained inA, and this is a section of
the natural mapA — Cp = B. The coaction ofA on B is given by this inclusion:

B-LXBoB— A®B.

If kis aQ-ring, the inclusionB < A is an isomorphism, but ik is anF,-ring for
some prime numbep, it will never be. For we have? € A, but the image ok” in
Cp is zero because > 2.

11.3.1/1?% is an R/Ix,Cp-module Let | be aP-ideal in aP-ring R. Then by 8.4,
I/1? is naturally aCp-module. It follows from the associativity of the action Bf

on R that theCp-action andR/I-action are intertwined as in 9.4, and therefore these
actions extend to an action &/IxCp.

11.4.Q% ), is an Rx 4Cp-module Let R be aP-ring. Because we havey, , = I/12,

wherel is the kernel of the multiplication maR ® R — R, the R-module Q}?/k is
naturally aRx 4C p-module.
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12. Classical plethories revisited

Let p be a prime number. In this section we present a constructiom of(of
2.13), and hence an approach to thtypical Witt vectors, which given the generalities
developed earlier in this paper, is completely effortless. We also discuss the linearization
of A4, and similar classical plethories.

12.1. Consider the trivialF,-plethory F,(e). The bialgebraA of additive elements
of F,(e) (see 10.3) is the free bialgebfg,[F] on the monoidN generated by the
Frobenius elemenf = ¢?. It therefore has a canonical lif[F] to a commutative
bialgebra overZ. Let Z(F) denote S(Z[F]) = Z[F°N], the freeZ-plethory on this
bialgebra. The natural map(F) — F,(e) is a surjection, and so we can consider the
amplification of Z(F) alongF, (e).

12.2. Proposition. There is a unique map & (F)-rings from 4, to the amplification
of Z(F) along F,(e), and this map is an isomorphism @f F)-plethories

Proof. Let P’ denote the amplification. Becaust, is p-torsion-free, 7.2 implies we
need only show that & (F)-deformation of aF,(e)-ring is the same as p-torsion-
free A,-ring. But this is just 3.4, the strengthened form of Cartier's Dieudonné—Dwork
lemma. O

12.3. The same process gives ramified and twisted versions of the Witt ringOLims
a Dedekind domain, lek be a residue field of characteristi; let q be a power of
p, and letF be a lift to O of the endomorphisnx — x? of k. Then theZ-plethory
Z(F) acts onO, and we can form the plethor®(F) := O ® Z(F), which maps to
k(e) by F — e4. Let M denote the rank-on@®-modulem=1(F —¢?), and letB denote
O(e) ® So(M). One can easily check there is a unigqeD-biring structure orB such
that the inclusionB — K(F) is a map of birings. (The structure maps are similar to
those in (6.6.1).) LeP denote the free pointed-plethory onB. Then an action of
P on anm-torsion-freeO-ring R is the same (6.6) as a map® R — R such that
e ©r +— r, which is the same as an endomorphi$mR — R extending theF on O
such thatF (x) = x? modm for all x € R. Thus anO(F)-deformation of ank(e)-ring
is the same as &-action on anm-torsion-free O-ring. BecauseP is m-torsion-free,
7.2 gives a canonical isomorphism frofto the amplification ofO(F) alongk(e).

Whenm is a principal ideal, surely much of this theory agrees with Hazewinkel's
formula-based approadB, Chapter 25}o objects of the same name. Any precise results
along these lines would require some proficiency in his theory, which proficiency we
do not have.

It seems worth mentioning, however, that whenis not principal, it is unlikely
Wp(R) has a description in terms of traditional-looking Witt components. The reason
is simply that the analogue di¥>(R), the ring of length-twoA ,-Witt vectors with
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entries inR, is
Ringp (B, R) = Ringpn(O(e) ® So(M), R) = R x (n®p R),

which is not naturallyR x R (as sets).

12.4.1t is also possible to recovet in this manner. For a finite s&of prime numbers,
construct aZ-plethory @5 as follows: Let®;; denote theZ-plethory Z(y, | p prime),
where they, are ring-like (2.7) and commute with each other. Boe= SU{p}, where
p is a prime not inS, let @y denote the amplification o®g along (F, ® @S)/(gb;” —
e”" |n>0). Using induction, one can construct a natural n@&p— A and prove that
&y is torsion-free and that torsion-freks-rings are the same as torsion-frég-rings
such thaty,(x) = x”modp for all p € S. It is also possible to show thabs is
canonically independent of the order of the amplifications.

Using Wilkerson’s resul{20] that a torsion-freet-ring is the same a ring equipped
with commuting Adams operationﬁp such thatnpp(x) = xP modp for all primesp,
it follows that the mapsbPs — A induce an isomorphism from the colimit of thig
to A.

One could certainly construct variants for rings of integers in general number fields,
as in the single-prime case above.

12.5. Linearization ofA4,. The additive bialgebra ofl,, is Z[F] with comultiplication

F — F ® F. (Because/, is torsion-free, additivity can be checked @® 4, =
Q(F), to which 11.2 can be applied.) It follows—either from the traditional, explicit
description (2.13) of1,, or from 6.6—that the cotangent spa€q, is freely generated
by the imagef of 01, the coaction is given by — F ® 0, and the maZ[F] — Z[0]

is F — p0. Note that

0" =p™"F" = 0, mod(Ap)4,

that is, the two familiar generating sef8,} and {07"} of A4, agree inC,,. Also note

that the mapF +— 0 is an isomorphism fromi to C 4, of algebras with am-coaction,

but the canonical map is not this map, or even an isomorphism at all. The general case
of 12.3 is very similar, but there is no canonical eleménbnly m~—1F.

12.6.Linearization ofA. The situation for/ is essentially the same. Its additive bialge-
braisZ[y, | p prime] with 4:y/, — ,®,. The cotangent space &1, | p primel,
and the coaction o[y, | p prime] on Z[4, | p prime] is given by 4, > ¥, ® 4.
The mapZ[y, | p primel — Z[4, | p prime] is given byy, — (=1)”p/,. These can
be checked using Newton’s formulgss, 1(2.11)].

12.7. The binomial plethory is1/(},, — e | n>1); its additive bialgebra is the trivial
one,Z, and its cotangent algebra 3.
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12.8.Bloch s Frobenius.There is an endomorphism of the de Rham—-Witt com8dx
which is usually called Frobenius, but which oforms is p~' F, whereF is the actual
Frobenius map. In fact, this endomorphism lifts to the de Rham compleW @?):
By 11.4, the elemenfl € Cp acts onQ%V(R), but we haved) = p~1F € Cp, and sod
r%duces to Bloch’s Frobenius map in degree 1. In degree0, Bloch’s Frobenius is
0®" as in

0y A - Am) =0 A= A O,

We remarked above that there is an isomorphisnigf and C,, of algebras with
an A ,-coaction identifyingF and 0 but that this is not the canonical map. This is
perhaps a pleasant explanation of the meaning of the well-known fact that Bloch’s is
a Frobenius operator even though it is ribe Frobenius operator.

For the variant of4, over a general integer rin@ at a primem, the compati-
bility between any generalization of Bloch's Frobenius map and the true one would
involve some choice of uniformizer, and so it would be a mistake to try to find such
a generalization. Instead it is th@-line m~ F® = (m~1F)® that acts.

12.9. Remark. The perfect cIosure{Fp(e))lfoc of the ring F,(e) has a uniqueF,-
plethory structure compatible with that df,(e). Let Z(F°*l) denote the free
Z-plethory on the group bialgeb@{F, F~1] of Z. Then the map of plethoriea(F°*1)
— (Fp(e))l’*oo is a surjection. One can show the amplificatiBnof this map is the
plethory push-out, or amalgamated product,/4f and Z(F°*Y)y over Z(F). Its Witt
functor is particularly interesting and useful:\ifis anF ,-ring, Wp (V) is Aint (V/Z,),
the universap-adic formal pro-infinitesimaZ ,-thickening ofV, in the sense of Fontaine
[7, 1.2].
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