Witt vectors, lambda-rings, and arithmetic jet spaces. Copenhagen, 2016.
Exercises for week 7.
(1) Let $i: C^{\prime} \rightarrow C$ be a fully faithful functor, and let W^{\prime} be a functor $C^{\prime} \rightarrow C^{\prime}$. Suppose that the left Kan extension of $i \circ W^{\prime}$ along i exists. Denote it by $W: C \rightarrow C$. Show that $i \circ W^{\prime}$ is canonically isomorphic to $W \circ i$. Show that if W^{\prime} has the structure of a comonad, then W also has a canonical comonad structure compatible with that on W. (Also, make the words 'canonical' and 'compatible' here precise.)
(2) Here's an example showing that \mathfrak{p}-torsion free modules are not closed under tensor product. Let A denote the ring $k[x, y]$, where k is a field, and let $\mathfrak{p}=(x)=x A$. Let M denote the ideal $(x, y) \subseteq A$. Prove that M is \mathfrak{p}-torsion free but $M \otimes_{A} M$ is not.
(3) Let (A, \mathfrak{p}, F) be a 'context' in the sense of week 6 . For any \mathfrak{p}-torsion free A-algebra R, let

$$
W_{1}(R)=\left\{\left\langle a_{0}, a_{1}\right\rangle \in R \times R \mid a_{1} \equiv F\left(a_{0}\right) \bmod \mathfrak{p} R\right\} .
$$

(For example, in the usual p-typical context, this is the usual W_{1}.) Show that W_{1} is represented by an A - A-biring Λ_{1}.
Write $\Psi=A\left[e, \psi, \psi^{\circ 2}, \ldots\right]$ as usual. Consider the map

$$
\Psi \odot \Lambda_{1}^{\odot m}=\Psi \odot \Lambda_{1} \odot \cdots \odot \Lambda_{1} \longrightarrow A\left[\mathfrak{p}^{-1}\right] \otimes_{A} \Psi
$$

defined by $f \odot g_{1} \odot \cdots \odot \cdots g_{m} \mapsto f \circ g_{1} \circ \cdots \circ g_{m}$. Show that $\Lambda^{(m)}$ is the image of this map.
(4) Here is an alternative approach to the one in week 6. Consider $A\left[\mathfrak{p}^{-1}\right] \otimes_{A} \Psi$ again. It is a pre- Λ-ring because the Frobenius lift condition is vacuous. Show it has a minimal sub-pre- Λ-ring $\tilde{\Lambda}^{(\infty)}$ containing Ψ. You can construct it explicitly as follows. Let $\tilde{\Lambda}^{(0)}=\Psi$, and let $\tilde{\Lambda}^{(m+1)}$ be the sub- $\tilde{\Lambda}^{(m)}$ algebra of $A\left[\mathfrak{p}^{-1}\right] \otimes_{A} \Psi$ generated by the set $\left\{\delta_{\eta}(f) \mid \eta \in \mathfrak{p}^{-1}, f \in \tilde{\Lambda}^{(m)}\right\}$. Then show that if we define $\tilde{\Lambda}^{(\infty)}=\bigcup_{m} \tilde{\Lambda}^{(m)}$, it has the required minimality property.
Show that $\tilde{\Lambda}^{(\infty)}$ is the free \mathfrak{p}-torsion free pre- Λ-ring on one generator.
(5) In fact, $\tilde{\Lambda}^{(m)}$ and $\Lambda^{(m)}$ agree. So the two approaches differ only in the way the objects are constructed, not in the objects themselves. To show this, first show that $\tilde{\Lambda}^{(m)}$ is the image of the map

$$
\Lambda_{1}^{\odot m} \odot \Psi \longrightarrow A\left[\mathfrak{p}^{-1}\right] \otimes_{A} \Psi
$$

defined by $g_{1} \odot \cdots \odot \cdots g_{m} \odot f \mapsto g_{1} \circ \cdots \circ g_{m} \circ f$. Then show that there is an isomorphism

$$
\Lambda_{1}^{\odot m} \odot \Psi \longrightarrow \Psi \odot \Lambda_{1}^{\odot m}
$$

defined by $g_{1} \odot \cdots \odot \cdots g_{m} \odot f \mapsto f \odot g_{1} \odot \cdots \odot \cdots g_{m}$. Finally, invoke question 3 above.

