Witt vectors, lambda-rings, and arithmetic jet spaces. Copenhagen, 2016.

Exercises for week 7.

- (1) Let $i: C' \to C$ be a fully faithful functor, and let W' be a functor $C' \to C'$. Suppose that the left Kan extension of $i \circ W'$ along i exists. Denote it by $W: C \to C$. Show that $i \circ W'$ is canonically isomorphic to $W \circ i$. Show that if W' has the structure of a comonad, then W also has a canonical comonad structure compatible with that on W. (Also, make the words 'canonical' and 'compatible' here precise.)
- (2) Here's an example showing that \mathfrak{p} -torsion free modules are not closed under tensor product. Let A denote the ring k[x, y], where k is a field, and let $\mathfrak{p} = (x) = xA$. Let M denote the ideal $(x, y) \subseteq A$. Prove that M is \mathfrak{p} -torsion free but $M \otimes_A M$ is not.
- (3) Let (A, p, F) be a 'context' in the sense of week 6. For any p-torsion free A-algebra R, let

 $W_1(R) = \{ \langle a_0, a_1 \rangle \in R \times R \mid a_1 \equiv F(a_0) \mod \mathfrak{p}R \}.$

(For example, in the usual *p*-typical context, this is the usual W_1 .) Show that W_1 is represented by an A-A-biring Λ_1 .

Write $\Psi = A[e, \psi, \psi^{\circ 2}, ...]$ as usual. Consider the map

 $\Psi \odot \Lambda_1^{\odot m} = \Psi \odot \Lambda_1 \odot \cdots \odot \Lambda_1 \longrightarrow A[\mathfrak{p}^{-1}] \otimes_A \Psi$

defined by $f \odot g_1 \odot \cdots \odot \cdots g_m \mapsto f \circ g_1 \circ \cdots \circ g_m$. Show that $\Lambda^{(m)}$ is the image of this map.

(4) Here is an alternative approach to the one in week 6. Consider $A[\mathfrak{p}^{-1}] \otimes_A \Psi$ again. It is a pre- Λ -ring because the Frobenius lift condition is vacuous. Show it has a minimal sub-pre- Λ -ring $\tilde{\Lambda}^{(\infty)}$ containing Ψ . You can construct it explicitly as follows. Let $\tilde{\Lambda}^{(0)} = \Psi$, and let $\tilde{\Lambda}^{(m+1)}$ be the sub- $\tilde{\Lambda}^{(m)}$ algebra of $A[\mathfrak{p}^{-1}] \otimes_A \Psi$ generated by the set $\{\delta_\eta(f) \mid \eta \in \mathfrak{p}^{-1}, f \in \tilde{\Lambda}^{(m)}\}$. Then show that if we define $\tilde{\Lambda}^{(\infty)} = \bigcup_m \tilde{\Lambda}^{(m)}$, it has the required minimality property.

Show that $\tilde{\Lambda}^{(\infty)}$ is the free p-torsion free pre- Λ -ring on one generator.

(5) In fact, $\tilde{\Lambda}^{(m)}$ and $\Lambda^{(m)}$ agree. So the two approaches differ only in the way the objects are constructed, not in the objects themselves. To show this, first show that $\tilde{\Lambda}^{(m)}$ is the image of the map

$$\Lambda_1^{\odot m} \odot \Psi \longrightarrow A[\mathfrak{p}^{-1}] \otimes_A \Psi$$

defined by $g_1 \odot \cdots \odot \cdots g_m \odot f \mapsto g_1 \circ \cdots \circ g_m \circ f$. Then show that there is an isomorphism

$$\Lambda_1^{\odot m} \odot \Psi \longrightarrow \Psi \odot \Lambda_1^{\odot m}$$

defined by $g_1 \odot \cdots \odot \cdots g_m \odot f \mapsto f \odot g_1 \odot \cdots \odot \cdots g_m$. Finally, invoke question 3 above.