Witt vectors, lambda-rings, and arithmetic jet spaces. Copenhagen, 2016.
Exercises for week 5 .
(1) Show that the Verschiebung map $V_{p}: W(R) \rightarrow W(R)$ descends to a map $W_{n}(R) \rightarrow W_{n+1}(R)$ (also denoted V_{p}) and induces an exact sequence

$$
0 \longrightarrow W_{n}(R) \xrightarrow{V_{p}} W_{n+1}(R) \longrightarrow R \longrightarrow 0 .
$$

Use this to show that the canonical map $W_{n}(R)[1 / p] \rightarrow W_{n}(R[1 / p])$ is an isomorphism.
(2) Show that the m-th ghost component map $w_{m}: W_{n}(R) \rightarrow R$ is integral, which is to say that every element of the codomain R satisfies a monic polynomial with coefficients in the image of w_{n}. Using this, show that the ghost map $W_{n}(R) \rightarrow R^{[0, n]}$ is integral. (Hint: recall that the sum of two integral elements is integral.)
(3) Prove the universal identity $V_{p}(x) V_{p}(y)=p V_{p}(x y)$. Use this to show that the kernel of the map $\mathbb{F}_{p} \otimes W_{n}(R) \rightarrow \mathbb{F}_{p} \otimes R$ is nilpotent. Can you find a similar formula for $V_{p}^{i}(x) V_{p}^{j}(y)$?
(4) Combine the questions above to show that the ghost map induces an integral morphism

$$
\coprod_{[0, n]} \operatorname{Spec} R=\operatorname{Spec} R^{[0, n]} \longrightarrow \operatorname{Spec} W_{n}(R)
$$

of schemes, which is an isomorphism away from p. Show that modulo p, this morphism can be identified with the projection

$$
\coprod_{[0, n]} \operatorname{Spec} \mathbb{F}_{p} \otimes R \longrightarrow \operatorname{Spec} \mathbb{F}_{p} \otimes R,
$$

at least if we work modulo nilpotent elements. Conclude that the ghost map

$$
\coprod_{[0, n]} \operatorname{Spec} R \longrightarrow \operatorname{Spec} W_{n}(R)
$$

is surjective. Thus one might say that, as a topological space, $\operatorname{Spec} W_{n}(R)$ looks like $n+1$ copies of $\operatorname{Spec} R$ glued together modulo p. Draw a picture of $\operatorname{Spec} W_{1}(\mathbb{Z}[x])$.
(5) For any $a \in R$, show that the canonical map $W_{n}(R)[1 /[a]] \rightarrow W_{n}(R[1 / a])$ is an isomorphism, where $[a]=(a, 0,0, \ldots, 0)_{\delta} \in W_{n}(R)$ denotes the Teichmüller representative of a.

