Witt vectors, lambda-rings, and arithmetic jet spaces. Copenhagen, 2016.

Exercises for week 4.

(1) Consider the composition ring $\Lambda'_p = \operatorname{colim}_{n,\psi} \Lambda_{p,n}$ as defined in the lecture. There we considered two elements $a, b \in \Lambda'_p$, where a comes from $e \in \Lambda_{p,1}$ and b comes from $-\delta \in \Lambda_{p,1}$. So formally we could write $a = \psi^{\circ -1}, b = -\psi^{\circ -1} \circ \delta$. Then a and b satisfy the relation $e + pb = a^p$, and a is \mathbb{Z} -algebralike (in the sense of ex. 2, q. 4), and b has the Leibniz rules

$$b(x+y) = b(x) + b(y) + \sum_{i=1}^{p-1} \frac{1}{p} {p \choose i} a(x)^i a(y)^{p-i}$$

$$b(xy) = a(x)^p b(y) + b(x) a(y)^p + pb(x) b(y)$$

$$b(0) = 0$$

$$b(1) = 0$$

The converse is also true—any two such operators a and b on a ring come from a unique Λ'_p -structure. Give a completely detailed proof of this.

(2) Let S denote the subring of the product ring $\mathbb{Z}^{\mathbb{N}}$ consisting of all $\langle a_0, a_1, \ldots \rangle$ such that $a_{n+1} \equiv a_n \mod p^{n+1}$ for all $n \ge 0$. In lecture it was stated that the ghost map $W(\mathbb{Z}) \to \mathbb{Z}^{\mathbb{N}}$ (which is injective) has image S, and hence that the ghost map induces an isomorphism $W(\mathbb{Z}) \to S$. Give a direct proof of this as follows:

First, show that S is the largest sub- ψ -ring of $\mathbb{Z}^{\mathbb{N}}$ on which ψ is a Frobenius lift; in other words, S is the largest sub- ψ -ring which is also a δ -ring. Then show that S satisfies the universal property of $W(\mathbb{Z})$, namely that for any δ -ring R, any ring map $R \to \mathbb{Z}$ lifts uniquely to a δ -morphism $R \to S$.

Your proof should use as little of the material developed in the class as possible.

- (3) Let Λ'_p be as in question 1, and let W' denote the associated Witt vector functor. Determine $W'(\mathbb{F}_p)$ and $W'(\mathbb{Z})$. (They are both isomorphic to familiar concrete rings. Hint: Use the concrete descriptions of $W_n(\mathbb{F}_p)$ and $W_n(\mathbb{Z})$.) Are there any nonzero \mathbb{F}_p -algebras that admit a Λ'_p -ring structure? (Hint: Use the concrete description of $W'(\mathbb{F}_p)$.)
- (4) The functor W preserves surjections, simply because $W(R) = R^{\mathbb{N}}$, as a set-valued functor. Does W' preserve surjections?
- (5) In lecture it was shown that the map $W(\mathbb{Z}_p) \to \mathbb{Z}_p$ sending a Witt vector with ghost components $\langle a_0, a_1, \ldots \rangle$ to its *p*-adic limit $\lim_n a_n$ induces a ring map $W(\mathbb{F}_p) \to \mathbb{Z}_p$ and that this map is an isomorphism.

Prove the following more general version of this. Let F be an extension of \mathbb{F}_p of degree d. The theory of local fields show there is a unique (up to unique isomorphism) complete discrete valuation ring R together with an isomorphism $R/pR \rightarrow F$, and that R has a unique endomorphism σ lifting the Frobenius map. (For example, if d = 1, then $F = \mathbb{F}_p$ and $R = \mathbb{Z}_p$. If d = 2 and $p \equiv 3 \mod 4$, then $F = \mathbb{F}_p[i]$ and $R = \mathbb{Z}_p[i]$.) Find, as above, a morphism $W(R) \rightarrow R$ factoring through $W(R) \rightarrow W(R/pR) = W(F)$ to an isomorphism $W(F) \rightarrow R$.

Can you generalize this to where F is allowed to be an arbitrary perfect field of characteristic p?