Witt vectors, lambda-rings, and arithmetic jet spaces. Copenhagen, 2016.

Exercises for week 3.

(1) Let P be a composition k-algebra. Prove that the k-algebra maps

$$\Delta^+, \Delta^* \colon P \to P \otimes_k P$$

and $\varepsilon^+, \varepsilon^{\times} \colon P \to k$ are in fact *P*-ring maps. (What is the *P*-ring structure on k?)

- (2) Let P be a composition k-algebra. An element $f \in P$ is said to be *additive* if $\Delta^+(f) = f \otimes 1 + 1 \otimes f$. Using question 1, show that f is additive if and only if on every P-ring, the operator is induces is additive in the usual sense. Let A_P denote the set of additive elements of P. Show that A_P has the structure of a k-algebra (possibly noncommutative), where addition is addition in P and where multiplication is composition in P.
- (3) Let H be a cocommutative bialgebra over a field k of characteristic 0. Let $P = \text{Sym}_k(H)$, with the usual composition structure. Show that the canonical inclusion $H \to P$ is a bijection onto A_P . Show that this is false if k has positive characteristic, provided $H \neq 0$.
- (4) Consider the composition ring $\Lambda'_p = \operatorname{colim}_{n,\psi} \Lambda_{p,n}$ as defined in the lecture. There we considered two elements $a, b \in \Lambda'_p$, where a comes from $e \in \Lambda_{p,1}$ and b comes from $-\delta \in \Lambda_{p,1}$. So formally we could write $a = \psi^{\circ -1}, b = -\psi^{\circ -1} \circ \delta$. Then a and b satisfy the relation $e + pb = a^p$, and a is \mathbb{Z} -algebralike (in the sense of ex. 2, q. 4), and b has the Leibniz rules

$$b(x + y) = b(x) + b(y) + \sum_{i=1}^{p-1} \frac{1}{p} {p \choose i} a(x)^i a(y)^{p-i}$$

$$b(xy) = a(x)^p b(y) + b(x) a(y)^p + pb(x) b(y)$$

$$b(0) = 0$$

$$b(1) = 0.$$

The converse is also true—any two such operators a and b on a ring come from a unique Λ'_p -structure. Give a completely detailed proof of this.

Are there any nonzero \mathbb{F}_p -algebras that admit a Λ'_p -ring structure?