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Abstract— Physics-based conditions are used to unfold
trapped or persistent degenerate singularities in a dynamical
model for plasma confinement transitions. Structural charac-
terization of the resulting enhanced model achieves unification
of previous disparate views of confinement transition physics,
provides valuable intelligence on shear flow suppression of
turbulence and oscillatory régimes, and suggests targeted ex-
perimental design, control and optimization strategies for new-
generation fusion experiments. The stability trade-offs involved
in achieving high confinement at low power input are discussed.

I. INTRODUCTION

Magnetic fusion plasmas are strongly driven non-
equilibrium systems in which the kinetic energy of small-
scale turbulent fluctuations can drive the formation of large-
scale, stable, coherent structures such as shear and zonal
flows that can function as barriers to or channels for trans-
port. This inherent tendency to self-organise is a striking
characteristic of flows where Lagrangean fluid elements
experience an effective two-dimensional velocity field, and is
believed to be due to two linked and consequential attributes
of the ideal two-dimensional flow: a second quadratic con-
served quantity, mean square vorticity or enstrophy, which
in turn allows significant spectral fluxes of energy to low
wavenumbers or large spatial scales [1]. In three dimen-
sions, turbulence is associated with stretching and folding of
vorticity, but a two-dimensional flow cannot turn or stretch
the vorticity vector. The distinctive properties of quasi two-
dimensional fluid motion are the basis of natural phenomena
such as zonal and coherent structuring of planetary flows,
but are generally under-exploited in technology.

These “inverse cascade” processes endemic to the ideal
two-dimensional flow are important in the large scale be-
haviour of rotating and stratified geophysical flows and
in magnetic fusion plasmas. Furthermore, since the domi-
nant motions over two spatial dimensions largely determine
how they arrange themselves long-term (the climates) two-
dimensional fluid dynamics is an acceptable first approxi-
mation. However, the instability mechanisms are essentially
three-dimensional. This is the sense in which I use the term
“quasi two-dimensional flow” to describe magnetic fusion
plasmas.

In such plasmas the most potentially useful effect of
quasi two-dimensional fluid motion is suppression of high
wavenumber turbulence that generates anomalous cross-field

transport fluxes and degrades confinement [2], which can
manifest as a dramatic enhancement of sheared poloidal or
zonal flows and concomitant reduction in turbulent trans-
port. These low- to high-confinement (L–H) transitions have
been the subject of intensive experimental, in numero, and
theoretical and modelling investigations since the 1980s.
Two major strands in the literature emerged early and have
persisted: (I) Confinement transitions are an internal, quasi
two-dimensional flow phenomenon and occur spontaneously
when the rate of upscale transfer of kinetic energy from
turbulence to shear and zonal flows, via Reynolds stress
decorrelation, exceeds the nonlinear dissipation rate [3]; (II)
Confinement transitions are due to a net loss of ions near
the plasma edge (because ions have larger larmor radii than
electrons), the resulting electric field providing a torque
which drives the poloidal shear flow nonlinearly [4], [5], [6].

In this work these different views of the physics of
confinement transitions are smoothly reconciled in a unified
dynamical model for the the coupled dynamics of potential
energy, turbulent kinetic energy, and shear flow kinetic
energy subsystems. The model is developed by a step-
wise iterative process: 1. Identify and interrogate degenerate
(high-order) trapped or persistent singularities in the simplest
model; 2. Unfold the singularities in physically meaningful
ways; 3. Interrogate any new singularities that occur in
enhanced model; 4. Repeat steps 2 and 3 until the model
is free of pathological or persistent degenerate singularities
(i.e., smooth), self-consistent, and therefore predictive.

In the context of control of fusion plasmas this analysis
provides the control engineer with knowledge of where and
how to access and optimise improved confinement states
given the constraints of minimising the power supplied and
avoiding — or perhaps exploiting — regimes of instability,
using the tunable control parameters of input power and shear
flow drive.

In ref. [7] the following reduced dynamical model for
confinement transitions was derived from averaged energy
moments of reduced MHD pressure and momentum convec-
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Fig. 1. Energy flux schematics for the gradient-driven plasma turbulence–
shear flow system. Curly arrows indicate dissipative channels, straight
arrows indicate inputs and transfer channels between the energy-containing
subsystems. See text for explanations of each subfigure. (a) Energy fluxes
modelled by Eqs 1–3; (b) energy fluxes modelled by Eqs 1, 4, and 5; (c)
energy fluxes modelled by Eqs 4, 5, and 6; (d) energy fluxes modelled by
Eqs 4, 7, and 8 .

tion equations in slab geometry:

ε
dP

dt
= Q− γNP (1)

dN

dt
= γNP − αv′2N − βN2 (2)

2
dv′

dt
= αv′N − µ(P,N)v′ + ϕ, (3)

where P is the pressure gradient potential energy, N is
the kinetic energy of the turbulence, and F = ±v′

2
is the

shear flow kinetic energy. The power input Q is assumed
constant, ε is the thermal capacitance, γ and α are conser-
vative energy transfer rate coefficients, β is the turbulence
dissipation rate coefficient, ϕ is a shear flow source rate, and
µ(P,N) = bP−3/2 + aPN represents the neoclassical and
turbulent contributions to viscous dissipation. It is helpful
to schematize the energy pathways through the P , N , and
F subsystems as in Fig. 1. The skeleton of this dynamical
system can be written down directly from (a) by inspection
and fleshed out by using specific rate expressions, which
were derived in [8] and [7] from semi-empirical arguments
or given as ansatzes.

The bifurcation structure of Eqs 1–3 predicts shear flow
suppression of turbulence, hysteretic, non-hysteretic, and os-
cillatory transitions, and saturation then decrease of the shear
flow with power input due to pressure-dependent anomalous
viscosity. All of these behaviors have been observed con-
sistently in magnetically contained fusion plasma systems
[2]. The model would therefore seem to be a “good” and
“complete” one, in the sense of being self-consistent, free
of pathological or persistent degenerate singularities, and
reflecting typical observed behaviors.

However, there are several outstanding issues that suggest
the model is still incomplete. The first issue arises as a
gremlin in the bifurcation structure of Eqs 1–3 that makes
a non-physical prediction. In section II a critical review
of the bifurcation structure brings to light the previously
unrecognized problem of trapped degenerate singularities.
This leads in to section III, where a trapped singularity is
unfolded smoothly by introducing another layer that models

the previously neglected physics of downscale energy trans-
fer. The second issue comes from a thermal diffusivity term
that was regarded as negligible in the previous work. Section
IV follows the qualitative changes to the bifurcation and
stability structure that are due to potential energy diffusivity
losses. The third issue arises from the two strands in literature
on the physics of confinement transitions. In section V the
unified model is proposed, in which is included a direct
channel between gradient potential energy and shear flow
kinetic energy. The results and conclusions are summarized
in section VI.

A systematic and very practical methodology for charac-
terizing the equilibria of dynamical systems involves locat-
ing and classifying high-order singularities then perturbing
around them to explore and map the bifurcation landscape
[9]. In a broad sense this paper is about applying singularity
theory as a diagnostic tool while an impasto picture of
confinement transition dynamics is compounded. The ob-
jective is to probe the relationship between the bifurcation
and stability properties of the model and the physics of the
system it is supposed to represent. In doing so, we shall take
a guided walking tour of Eqs 1–3 and modifications and
extensions to this system to study the type, multiplicity, and
stability of attractors, interrogate degenerate or pathological
singularities where they appear, and classify and map the
bifurcation structure. The guiding motif is understanding the
qualitative structure and properties of the system rather than
concern for verisimilitude.

II. SYMMETRY-BREAKING HAS BOTH LOCAL AND
GLOBAL CONSEQUENCES

A bifurcation diagram for Eqs 1–3 is given in Fig.
2(a), where the power input Q is chosen as the principal
bifurcation or control parameter. (In these and subsequent
diagrams solid lines mark stable equilibria, dashed lines mark
unstable equilibria, and amplitude envelopes of limit cycles
are indicated by solid dots.) It is rich with information that
speaks of the known and predicted dynamics of the system
and foretells ways in which the model can be improved
further. Two features in particular are to be noted:

(1) The system may be evolved to an equilibrium on the
antisymmetric, −v′ branch, but if the power input then ebbs
below the turning point at (v′, Q) ≈ (−0.9, 0.46) the shear
flow must spontaneously reverse direction, nominally to the
lower +v′ branch. The zoom-in shows an example of an
unusual feature in a bifurcation landscape, a region where
there is fivefold multiplicity comprising three stable and two
unstable equilibria. Two other, quite different, examples of
threefold stable domains will be shown in section IV. In the
remainder of this paper I concentrate on the +v′ branch and
ignore the −v′ regime.

(2) For ϕ = 0 the bifurcation diagram features a symmet-
ric pitchfork at v′ = 0, thus ϕ is a local symmetry-breaking
parameter. However ϕ has more far-reaching effects than
merely providing a local universal unfolding of the
pitchfork, for the branch of unstable equilibrium solutions
that is just evident in the top (lower) left-hand corner was
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Fig. 2. Steady state and periodic solutions of Eqs 1–3 as a function of the
power input Q. (a) ϕ = 0.05, ε = 1.5. The solution curves in the N and P
diagrams are annotated to indicate whether they correspond to the +v′ or
−v′ domain. (b)–(e) ε = 1. (b) ϕ = 0.08, (c) ϕ ≈ 0.08059 = ϕTm, (d)
ϕ = 0.1, (e) ϕ = 0.11. Other parameters: β = 1, γ = 1, b = 1, a = 0.3,
α = 2.4.

trapped as a singularity at (v′, Q) = (∞, 0) for ϕ = 0. As
ϕ is increased this “new” branch passes through the heart of
the model, the organizing centre. In (b) a segment of stable
solutions has been created on the “new” branch as the Hopf
bifurcation, which was born through a double zero eigenvalue
(DZE), moves away from the turning point; the small branch
of limit cycles can also be seen. At ϕTm — the organizing
centre — the “new” and “old” branches exchange arms, (c),
via an unusual, non-symmetric, transcritical bifurcation. This
point signals a profound change in the type of dynamics
that the system is capable of. For ϕ > ϕTM , (d) and (e),
a transition must still occur at the lower turning point, but
classical hysteresis is (locally) forbidden.

III. SHEAR FLOWS ALSO GENERATE TURBULENCE

The first issue of incompleteness germinates from a
pathology in the bifurcation structure of the model, which
implies infinite growth of shear flow as the power input falls.
Before we pinpoint the culprit singularity, it is illuminating
to evince the physical — or non-physical — situation by
considering Eqs 1–3 on the stretched (or shrunken) timescale

τ = t/ε. In a system of low thermal capacitance ε � 1
and N ≈ N0 and v′ ≈ v0. Thus the dynamics becomes
quasi one-dimensional: the potential energy subsystem sees
the kinetic energy subsystems as nearly constant, and P ≈
(P0 −Q/ (N0γ)) exp (−N0γτ) + Q/ (N0γ). Reverting to
real time, as εdP/dt → 0 we have P ≈ Q/(γN); the
potential energy is reciprocally slaved to the kinetic energy
dynamics. The anomaly in this low-capacitance picture is
that, as the power input Q ebbs toward zero, the shear flow
can grow quite unrealistically. In Fig. 2(e) the conjectured
fate of the surviving Hopf bifurcation is a double zero eigen-
value trap at (Q, v′) = (0,∞). Numerical experiments show
that with diminishing ε the Hopf bifurcation moves upwards
along the curve, the branch of limit cycles shrinks, and
the conjugate pair of pure imaginary eigenvalues approaches
zero. It would seem, therefore, that some important physics
is still missing from the model.

A. A trapped singularity is found and released

What is not shown in Fig. 2 (because a log scale is
used for illustrative purposes) is a highly degenerate branch
of equilibria that exists at Q = 0 where N = 0 and
v′ = (P 3/2ϕ)/b; it is shown in Fig. 3(a). For ϕ > 0
there is a trapped degenerate turning point, annotated as
s4, where the “new” branch crosses the Q = 0 branch. (In
this and subsequent diagrams, where amplitude envelopes
of oscillatory domains are not plotted for clarity, the Hopf
bifurcations are annotated with asterisks.)

The key to the release (or unfolding) of s4 lies in recog-
nising that kinetic energy in large-scale structures inevitably
feeds the growth of turbulence at smaller scales, as well
as vice versa [2]. In a flow where fluid elements locally
experience a velocity field that is strongly two-dimensional
there will be a strong tendency to upscale energy trans-
fer (or inverse energy cascade, see [1]), but the net rate
of energy transfer to high wavenumbers (or Kolmogorov
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Fig. 3. Steady state and periodic solutions of Eqs 1, 4, and 5 as a function
of the power input Q.(a) κ = 0, ϕ = 0.08; (b) κ = 0.001, ϕ = 0.08;
(c) κ = 0.001, ϕ = 0.083; (d) κ = 0.001, ϕ = 0.084. Other parameters:
b = 1, γ = 1, ε = 1, β = 0.3, a = 0.3, α = 2.4.
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cascade, see [10]) is not negligible. What amounts to an
ultraviolet catastrophe in the physics when energy transfer
to high wavenumbers is neglected maps to a trapped degen-
erate singularity in the mathematical structure of the model.
The trapped singularity s4 may be unfolded smoothly by
including a simple, conservative, back-transfer rate between
the shear flow and turbulence subsystems:

dN

dt
= γNP − αv′2N − βN2 + κv′2 (4)

2
dv′

dt
= αv′N − µ(P,N)v′ + ϕ− κv′. (5)

The enhanced model consists of Eqs 1, 4, and 5, and the
corresponding energy flux diagram is Fig. 1(b). The back-
transfer rate coefficient κ need not be identified with any
particular animal in the zoo of plasma and fluid instabilities,
such as the Kelvin-Helmholtz instability; at this level it is
simply a lumped dimensionless parameter that expresses the
inevitability of energy transfer to high wavenumbers. The
stability structure of this enhanced model was investigated
in [11].

The manner and consequences of unfolding s4 can be
appreciated from Fig. 3b, from which one learns a salutary
lesson: non-physical equilibria and singularities should not
be ignored or dismissed as irrelevant, because they can play
an important role in determining bifurcation structure in the
physical domain.

The unfolding creates a maximum in the shear flow, and
(apparently) a fourth Hopf bifurcation is released from a
trap at infinity. At the given values of the other parameters
a finite-area isola of steady-state solutions is formed, but
it is important to visualize this (or, indeed, any other)
bifurcation diagram as a slice of a three-dimensional sur-
face of equilibrium solutions, where the third coordinate
is another parameter. (Isolas of steady-state solutions were
first reported in the chemical engineering literature, where
dynamical models typically include a thermal or chemical
autocatalytic reaction rate [12].) Figure 3(c) and (d) show
two slices of this surface, taken to demonstrate that the
organizing centre is preserved through the unfolding of s4.
Here the other turning points are labelled s1, s2, and s3.
Walking through (c) and (d) we make the forward transition
at s1 and progress along this branch through the onset of
a limit cycle régime, as in Fig. 2. For obvious reasons this
segment is now designated as the intermediate shear flow
branch, and the isola or peninsula as the high shear flow
branch. In (c) a back-transition occurs at s2. The system
can only reach a stable attractor on the isola via a transient,
either a non-quasistatic jump in a second parameter or an
evolution from initial conditions within the appropriate basin
of attraction. In (d) as we make our quasistatic way along
the intermediate branch with diminishing Q the shear flow
begins to grow, then passes through a second oscillatory
domain before reaching a maximum and dropping steeply;
the back transition in this case occurs at s4.

To reiterate this last point: the shear flow can actually grow
as the power input is withdrawn. This is an important and

testable prediction.

IV. THERMAL DISSIPATION AFFECTS THE BIFURCATION
STRUCTURE

In the model so far the only outlet channel for the
potential energy is conversion to turbulent kinetic energy,
given by the conservative transfer rate γPN . However, in
a driven dissipative system such as a plasma other conduits
for gradient potential energy may be significant. The cross-
field thermal diffusivity, a neoclassical transport quantity
[13] is often assumed to be negligible in the strongly-driven
turbulent milieu of a tokamak plasma [14], [8], [7], but here
Eq. 1 is modified to include explicitly a linear “infinite sink”
thermal energy dissipation rate:

ε
dP

dt
= Q− γNP − χP. (6)

Following ref. [15] χ is taken as a lumped dimensionless
parameter and the rate term χP as representing all non-
turbulent or residual losses such as neoclassical and radiative
losses. The model now consists of Eqs 4, 5, and 6.

In Fig. 4 a series of bifurcation diagrams has been com-
puted for increasing values of χ and a connected slice of
the steady state surface. The corresponding energy schematic
is Fig. 1(c). A qualitative change is immediately apparent,
which has profound and far-reaching consequences: for χ >
0 the two new turning points s5 and s6 appear, born from
a local cusp singularity. Overall, from (a) to (e) we see that
s1 does not shift significantly but that the peninsula becomes
more tilted and shifts to higher Q, but let us begin a walking
tour at s1 in (b). Here, as in Fig. 3, the transition occurs
to an intermediate shear-flow state and further increments
of Q take the system through an oscillatory régime. But
the effect of decreasing Q is radically different: at s6 a
discontinuous transition occurs to a high shear flow state
on the stable segment of the peninsula. From this point we
may step forward through the shear flow maximum and fall
back to the intermediate branch at s5. We see that over the
range of Q between s5 and s6 the system has five steady
states, comprising three stable interleaved with two unstable
steady states. As in Fig. 3(c) and (d) a back transition at low
Q occurs at s4.

The tri-stable régime in (b) has disappeared in (c) in a
surprisingly mundane way: not through a singularity but
merely by a shift of the peninsula toward higher Q. But
this shift induces a different tristable régime through the
creation of s7 and s8 at another local cusp singularity. In
(d) s4 and s7 have been annihilated at yet another local cusp
singularity. It is interesting and quite amusing to puzzle over
the 2-parameter lines of s1, s4, s5, s6, s7, and s8 over χ
projected in Fig. 5. The origins of the four cusps can be
read off the diagram, keeping in mind that the crossovers
are a trompe de l’oeil: they are non-local. Since the two
black areas do not overlap, there is no domain of sevenfold
multiplicity in the system!

Returning to Fig. 4, at s5 in (c), (d), and (e) the system
transits to a limit cycle, rather than to a stable intermedi-
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ate steady state. The amplitude envelope of the oscillatory
règime is included in (e), and shown are the bifurcation
diagrams in N and P as well as v′. The turbulence is
enormously suppressed due to uptake of energy by the shear
flow, but rises again dramatically with this hard onset of
oscillations. The pressure gradient jumps at s1 because the
power input exceeds the distribution rates, and oscillatory
dynamics between the energy subsystems sets in abruptly
at s5.

V. A UNIFIED MODEL INCLUDES A NONLINEAR SHEAR
FLOW DRIVE

In section I the two major strands of investigation into the
physics of L–H transitions were described, and the models
analysed in sections II–IV are limited to strand I physics
where the transitions are an internal, quasi two-dimensional
flow phenomenon. In this section I extend the models to
include strand II physics self-consistently. In strand (II) in
the literature confinement transitions are modelled in terms

Fig. 5. In the two black areas there are five steady states and in the dusted
areas there are three steady states.

of a nonlinear electric field driving torque created by nonam-
bipolar ion orbit losses from the plasma edge region [4], [5],
[6]. Although there are many supporting experiments [16],
the “electric field bifurcation” model cannot explain shear
flow suppression of turbulence, because it has no coupling to
the internal dynamics of energy transfers from the potential
energy reservoir. Here this plasma edge physics is treated as
a piece of a more holistic picture and a simple rate r(P )
of shear flow generation due to ion orbit losses is used to
complete the model, which now consists of Eq. 4 and

ε
dP

dt
= Q− γNP − v′2r(P )− χP (7)

2
dv′

dt
= αv′N − µ(P,N)v′ + v′r(P )− κv′ + ϕ, (8)

where, following the earlier authors, r(P ) =
ν exp

[
−

(
w2/P

)2
]
. This expression simply says that

the rate at which ions are preferentially lost, and hence
flow is generated, is proportional to a collision frequency
ν times the fraction of those collisions that result in ions
with sufficient energy to escape. The form of the energy
factor assumes an ion distribution that is approximately
Maxwellian and w2, analogous to an activation energy, is
proportional to the square of the critical escape velocity. In
this form of the rate expression I have explicitly included
the temperature-dependence of r, through P , which couples
it to the rest of the system. If w is high the rate is highly
temperature (pressure gradient) sensitive. (For heuristic
purposes constant density is assumed, constants and
numerical factors are normalized to 1, and the relatively
weak temperature dependence of the collision rate ν is
ignored.) The corresponding energy schematic is Fig. 1(d)
where it is seen that r(P ) is a competing potential energy
conversion channel, that can dominate the dynamics when
the critical escape velocity w is low or the pressure is high.

This is exactly what we see in the bifurcation diagrams,
Fig. 6. Overall, the effect of this contribution to shear flow
generation from the ion orbit loss torque is to elongate and
flatten the high shear flow peninsula. The Hopf bifurcations
that are starred in (a), where the contribution is relatively
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small, have disappeared in (b) at a DZE singularity. What this
means is that as r(P ) begins to take over there is no longer
a practicably accessible intermediate branch in the transition
region, because the intermediate branch is unstable until
the remaining Hopf bifurcation is encountered at extremely
high Q. Locally, in the transition region, the bifurcation
diagram begins to look more like the simple S-shaped, cubic
normal form schematics with classical hysteresis featured
in numerous papers by earlier authors (e.g., [4]). However,
as can be seen in Fig. 6(b) where the bifurcation diagram
is rendered in the turbulent kinetic energy N , this unified
model accounts for shear flow suppression of the turbulence,
whereas theirs could not.

VI. SUMMARY AND CONCLUSIONS

The generation of stable shear flows and associated con-
finement transitions and oscillatory behavior in magnetic
fusion plasmas is regulated by Reynolds stress decorrelation
of gradient-driven turbulence and/or by an induced bistable
radial electric field. These two mechanisms are seamlessly
unified by a smooth path through the singularity and bifurca-
tion structure of a reduced dynamical model for this system.

The model is constructed self-consistently, beginning from
simple rate-laws derived from the basic pathways for energy
transfer from pressure gradient to shear flows. It is iteratively
strengthened by finding and classifying the singularities and
allowing them to “speak for themselves”, then matching up
appropriate physics to their unfoldings. The smooth path
from turbulence driven to electric field driven shear flows
crosses an interesting landscape:

• Hysteresis is possible in both régimes and is governed
by different physics.

• A metamorphosis of the dynamics is encountered, near
which hysteretic transitions are forbidden. The meta-
morphosis is a robust organizing centre of codimen-
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Fig. 6. Steady state and periodic solutions of Eqs 4, 7, and 8 as a function
of the power input Q. (a) ν = 0.015, (b) ν = 0.05. χ = 0.01, κ = 0.001,
ϕ = 0.088, β = 0.3, a = 0.3, α = 2.4, b = γ = ε = w = 1.

sion 1, even though there are singularities of higher
codimension in the system.

• Transitions may occur to and from oscillatory states.
• To traverse the smooth path several obstacles are suc-

cessively negotiated in physically meaningful ways: a
pitchfork is dissolved, which non-locally releases a
branch of solutions from a trap at infinity, a singularity
is released from a trap at zero power input, and two
régimes of fivefold multiplicity are reconnoitred.

These results suggest strategies for controlling access to
high confinement states, reducing turbulent transport, and
manipulating oscillatory behaviour in new-generation fusion
experiments that aim to achieve a self-sustaining burning
plasma. More generally I have shown that low-dimensional
models have a useful role to play in the study of one of
the most formidable of complex systems, a strongly driven
turbulent plasma.
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