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Abstract: This commentary article highlights the important role of black carbon produced from biomass burning in 

the global carbon cycle. Consideration of the fundamental chemistry and thermokinetics of cellulose thermal 

decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames 

must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates 

that black carbon may be a significant carbon reservoir that persists over geological time scales.  
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 A recent review by Ramanathan and Carmichael [1] 
focuses on the role of aerosol black carbon or soot in climate 
variability, with strong radiative forcing predicted. On the 
other hand, the global climate model used by Schmittner et 
al. [2] makes long-term predictions of temperature rises due 
to atmospheric and oceanic oxidized carbon loadings but 
neglects the contribution made by black carbon (charcoal 
and soot). However, black carbon produced as a result of 
biomass burning may have a role in the long-term carbon 
cycle that is significant both quantitatively and in terms of 
our response to biomass combustion and climate changes.  

 Black carbon is defined as the combustion product 
fraction that has a H/C molar ratio  0.2 and is thermally 
stable to 340  C in pure oxygen [3]. The production of black 
carbon from biomass burning is governed by the thermal 
decomposition (or pyrolysis) chemistry of cellulose, the 
major constituent of the terrestrial biomass and by far the 
most abundant biopolymer on earth. In Fig. (1) the key 
carbon reservoirs and transfer channels involved in the 
biomass burning cycle are schematized. Under the thermal 
stress of a fire the primary decomposition of cellulose yields 
combustible volatiles (mainly the anhydrosugar 
levoglucosan) and solid black carbon residue.  

 Crucial to the fire ecology subsystem, and to the global 
carbon cycle as a whole, is the competitive nature of these 
two processes — volatiles are produced at the expense of 
char and vice versa. The reciprocally linked formation of 
volatiles and char was first suggested formally in the work of 
Kilzer and Broido (1965) [4] and has been verified by 
numerous experiments since.  

 A small fraction of the hot volatile gases also condenses 
and dehydrates to black carbon, or soot, as indicated in the 
figure. During normal biomass burning conditions the 
volatiles oxidize to carbon dioxide, water, and other minor 
products (flaming combustion). Where the temperature is  
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Fig. (1). In this simplified (but not inaccurate) world carbon 

accumulates in the long time scale (> 6000 years) reservoir of black 

carbon which therefore becomes a loss channel, relative to the short 

time scale (1–200 years) of carbon accumulation in the biomasss 

and atmospheric CO2 reservoirs. The processes that distribute 

carbon between flammable volatiles and black carbon are 

reciprocally linked, or competitive.  

high enough a small amount of the black carbon also burns 
(glowing combustion), but most remains intact chemically 
and joins a stable pool of carbon sequestered for the long 
term. Thus, while the residence time of carbon in the 
volatiles pool is effectively zero, since volatiles are removed 
by combustion or condensation as soon as they are formed, 
the biomass and CO2 pools do not “see” any changes in the 
unburned black carbon pool.  

 What are these processes at the core of this competition, 
that are so important in the global carbon cycle? Cellulose 
thermal decomposition chemistry is complicated and not all 
of the reaction pathways are known, but the fundamental 
competing reactions that determine the bias toward charring 
or volatilization are exemplars of well-known nucleophilic 
addition chemistry. For heuristic purposes they are shown in 
Fig. (2) and a brief outline follows. The primary structure of 
cellulose consists of -1,4 linked glucopyranose units in 
alternating orientation in a linear chain, a two-unit section of 
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which is sketched in Fig. (2), labeled as A. Thermolysis of A 
yields positively charged B and negatively charged C 
fragments. The competing reaction steps are highlighted in 
the figure: the resonance-stabilized positive centre of B may 
be attacked by the hydroxyl group on C-6 of the same unit to 
produce the cyclized levoglucosan end D or by a water 
molecule to produce a reactive reducing end E. Thermolysis 
at the next glycosidic linkage of D releases the volatile 
levoglucosan. The species E undergoes subsequent dehydra-
tion, decarbonylation, aromatization, and cross-linking 
reactions that produce black carbon. (The negatively charged 
fragment C rapidly picks up a positive hydrogen ion to form 
a relatively unreactive non-reducing end F). 

 

Fig. (2). Competitive nucleophilic addition chemistry at the heart of 

cellulose thermal decomposition. R and R’ designate the remainders 

of the chains on reducing and non-reducing sides of the two-unit 

section A. To unclutter the sketches the symbols for hydrogen 

atoms attached to the carbon skeleton are included only for A.  

 During pyrolysis the instantaneous balance between 
charring and volatilization depends on the thermokinetics (or 
temperature dependent rates) and enthalpies of the 
competing processes. In Fig. (3) the governing thermal and 
chemical feedbacks are indicated. The dehydration reactions 
essential to char formation have low activation energy 
( 110–200 kJ mol 1) and occur at relatively low 
temperatures as the cellulose substrate heats. The water 
produced can act as an autocatalyst, inhibiting volatilization 
and biasing the competition toward charring. However, the  

Fig. (3). Chemical and thermal feedbacks, indicated by dotted 

arrows, govern the competition between charring and volatilization 

pathways.  

charring reactions are bond-forming and exothermic ( H 
2000 Jg 1 of char formed). This heat promotes the 

temperature sensitive, high activation energy ( 200–240 kJ 
mol 1),volatilization reactions, which begin to take over. But 
volatilization is endothermic ( H  540 Jg 1 of volatiles 
formed) so in the absence of an alternative heat source such 
as combustion the reaction self-damps, thus switching the 
reaction field again to the charring pathway. Under 
appropriate conditions fires can be observed to flicker and 
fluctuate between these two pathways. More details on the 
chemistry and competitive thermokinetics of cellulose 
pyrolysis can be found in the works of Ball et al. [5-7] and 
references therein.  

 The black carbon that is ultimately formed from reducing 
end fragments E in Fig. (2) has a polymeric aromatic to 
crystalline graphitic structure that is highly resistant to 
chemical, photochemical, and enzyme attack. It is believed 
to have accumulated in marine sediments over gelogical 
time, indicating that it is a long-term carbon sink [3, 8], 
although quantification of black carbon in soils and 
sediments has large error bars [9]. In the simplified (but not 
inaccurate) world of Fig. (1) the only mass loss channel is 
via the black carbon reservoir and any non-zero production 
of black carbon must inevitably result in carbon 
sequestration, which could become significant over cycles of 
burning and regrowth.  

 How significant is black carbon as a carbon sink? Some 
reasonable order-of-magnitude quantitation would be 
helpful, at least as a starting point. In the simplest case one 
assumes that burnt biomass is renewed annually. The amount 
of carbon stored in the atmosphere is estimated as 750 Gt 
and the amount in vegetation is estimated as 610 Gt [10]. 
The mass percentage of the carbon in the biomass that is 
burned each year is taken as 1%. (Wirth et al. (2002) [11] 
estimated that 33% of net carbon gain in Siberian forests is 
lost to fire, so this does not seem unreasonable.) The average 
fraction of biomass carbon converted to black carbon during 
each burning cycle is taken as 5% [12]. (Estimates in the 
literature range from 40% [13] to 3% [14]). After 100 
years of annual burning and regrowth under these conditions 
the amount of black carbon produced is 30.5 Gt and the mass 
of carbon in the atmosphere has been reduced by 4.1%.  

 In this simple model the rate of production of black 
carbon is effectively first order in the amount of carbon in 
the atmospheric reservoir. The rate or time constant is << 
1yr 1 ( 4 10 4 yr 1) so that over 100 years the accumulation 
of black carbon is linear to a good approximation. Of course 
one does not expect that atmospheric CO2 would asymptote 
to zero, disappearing into the black carbon sink through 
smaller and smaller conflagrations of an ever-diminishing 
biomass. In reality other carbon pathways may take over. For 
example, we note that a) condensation and combustion of 
volatiles are also competing reaction paths in Fig. (1), and b) 
black carbon production sequesters molecular oxygen in the 
atmosphere [3]. Thus higher partial pressure of oxygen may 
favor soot reduction by biasing this secondary competition 
toward cleaner burning of the volatiles, resulting in a larger 
fraction of carbon being returned to the atmosphere as CO2. 
(However, lower oxygen concentrations on a warmer earth 
are predicted in the work of [2]). On the other hand, charring 
also produces water vapor. Reference to Figs. (2) and (3) 
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indicates that increased concentrations of water vapour may 
favor the charring pathway in Fig. (1), having an 
autocatalytic effect provided the heat released by charring is 
dissipated before it switches the system to the volatilization 
pathway.  

 These hypothetical examples fall into the category of 
“educated conjectures” at present, but they, and this 
discussion as a whole, do highlight important but neglected 
issues regarding the crucial role played by the competitive 
thermal decomposition of cellulose in global carbon cycles. 
In summary:  

1. A simple order-of-magnitude quantitative analysis 
indicates that black carbon may be a significant 
carbon reservoir that persists over geological time 
scales. Predictive global climate cycle models as used 
in [2] that neglect the production of black carbon may 
need significant corrections.  

2.  The competition between volatilization and charring 
in Fig. (1) that rules the thermal decomposition of 
cellulosic biomass can be biased one way or the other 
by natural events or by management or engineering 
practices.  

3.  Sequestration of biomass carbon into the stable black 
carbon pool is inhibited and release of CO2 by 
respiration is enhanced if biomass burning is 
suppressed.  

4.  On the global scale, decreased biomass burning, 
hotter biomass burning, and biasing burning practices 
(of biomass and fossil fuels) to produce soot-free 
flames as suggested in [1], inevitably transfer more 
carbon to the atmosphere at the expense of black 
carbon production.  

 Further quantification work may help to refine global 
climate cycle models such as that used by Schmittner et al. 
[2], and estimates of the effects of aerosols on climates such 
as those made by Ramanathan and Carmichael [1]. The black 
carbon issue is likely to receive more attention because 
increasing temperatures and temperature gradients are 
predicted to result in more wildfires, and people’s 
dependence on biomass for fuel is also expected to continue 
increasing.  

 It is also interesting to ponder that the most prolific 
biopolymer on earth has exactly the right competitive 
thermokinetic and thermochemical properties to prevent it 
from swamping the earth, thwart the development of 
intolerable populations of termites (and therefore methane 
emissions), and provide a stable carbon sink. Its thermal 
decomposition and combustion behaviors should not be 
neglected.  
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